scispace - formally typeset
Search or ask a question
Author

Katsutoshi Goto

Bio: Katsutoshi Goto is an academic researcher from University of Tsukuba. The author has contributed to research in topics: Endothelin 1 & Endothelin receptor. The author has an hindex of 63, co-authored 228 publications receiving 31015 citations. Previous affiliations of Katsutoshi Goto include University of Texas Southwestern Medical Center.


Papers
More filters
Journal ArticleDOI
31 Mar 1988-Nature
TL;DR: Cloning and sequencing of preproendothelin complementary DNA shows that mature endothelin is generated through an unusual proteolytic processing, and regional homologies to a group of neurotoxins suggest that endothelins is an endogenous modulator of voltage-dependent ion channels.
Abstract: An endothelium-derived 21-residue vasoconstrictor peptide, endothelin, has been isolated, and shown to be one of the most potent vasoconstrictors known. Cloning and sequencing of preproendothelin complementary DNA shows that mature endothelin is generated through an unusual proteolytic processing, and regional homologies to a group of neurotoxins suggest that endothelin is an endogenous modulator of voltage-dependent ion channels. Expression of the endothelin gene is regulated by several vasoactive agents, indicating the existence of a novel cardiovascular control system.

10,651 citations

Journal ArticleDOI
TL;DR: Three distinct human endothelin-related genes were cloned by screening a genomic DNA library under a low hybridization stringency with a synthetic oligonucleotide probe encoding a portion of the endotheli sequence, suggesting the possible existence of endothelins receptor subtypes.
Abstract: Three distinct human endothelin-related genes were cloned by screening a genomic DNA library under a low hybridization stringency with a synthetic oligonucleotide probe encoding a portion of the endothelin sequence. Genomic Southern blot analysis with the same oligonucleotide probe showed three corresponding chromosomal loci not only in the human genome but also in porcine and rat genomes. The nucleotide sequences of the three human genes were highly conserved within the regions encoding the 21-residue (mature) endothelins, in spite of the fact that the immediately upstream exon sequences, which encode a part of the propeptides, retained little similarity. Moreover, each of the human genes predicted a putative 21-residue peptide, similar to but distinct from each other: (i) the "classical" endothelin (ET-1), (ii) [Trp6,Leu7]endothelin (ET-2), and (iii) [Thr2,Phe4,Thr5,Tyr6, Lys7,Tyr14]endothelin (ET-3). Synthetic ET-1, ET-2, and ET-3 were prepared according to the deduced amino acid sequences, and the biological activities were assayed by contraction of isolated porcine coronary artery strips and by intravenous injection to anesthetized rats. All these synthetic peptides produced strong vasoconstrictor and pressor responses. However, the quantitative profiles of the pharmacological activities were considerably different among the three isopeptides, suggesting the possible existence of endothelin receptor subtypes.

2,548 citations

Journal ArticleDOI
01 Dec 1990-Nature
TL;DR: The cloning of a complementary DNA encoding one subtype belonging to the superf amily of G protein-coupled receptors is reported, indicating that this cDNA encodes a 'nonselective' subtype of the receptor which is different from the vascular smooth muscle receptor.
Abstract: ENDOTHELIN-1 was initially identified as a 21-residue potent vasoconstrictor peptide produced by vascular endothelial cells, but was subsequently found to have many effects on both vascular and non-vascular tissues1,2. The discovery of three isopeptides of the endothelin family3, ET-1, ET-2 and ET-3, each possessing a diverse set of pharmacological activities of different potency, suggested the existence of several different endothelin receptor subtypes3–7. Endothelins may elicit biological responses by various signal-transduction mechanisms, including the G protein-coupled activation of phospholipase C and the activation of voltage-dependent Ca2+ channels8–10. Thus, different subtypes of the endothelin receptor may use different signal-transduction mechanisms. Here we report the cloning of a complementary DNA encoding one subtype belonging to the superf amily of G protein-coupled receptors. COS-7 cells transfected with the cDNA express specific and high-affinity binding sites for endothelins, responding to binding by the production of inositol phosphates and a transient increase in the concentration of intracellular free Ca2+. The three endothelin isopeptides are roughly equipotent in displacing 125I-labelled ET-1 binding and causing Ca2+ mobilization. A messenger RNA corresponding to the cDNA is detected in many rat tissues including the brain, kidney and lung but not in vascular smooth muscle cells. These results indicate that this cDNA encodes a 'nonselective' subtype of the receptor which is different from the vascular smooth muscle receptor.

2,450 citations

Journal ArticleDOI
01 May 2001-Neuron
TL;DR: Evidence is provided that orexin-containing neurons play important roles in regulating vigilance states and energy homeostasis and the pathophysiology and treatment of narcolepsy.

1,362 citations

Journal ArticleDOI
TL;DR: A further study of the distribution of ORX-containing neurons in the adult rat brain to provide a general overview of the ORX neuronal system was conducted in this article. But, the results were limited to the lateral hypothalamic area (LHA) and dorsomedial hypothalamic nucleus (DMH), the regions classically implicated in feeding behavior.

1,020 citations


Cited by
More filters
Journal ArticleDOI
29 Apr 1993-Nature
TL;DR: The ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.
Abstract: Atherosclerosis, the principal cause of heart attack, stroke and gangrene of the extremities, is responsible for 50% of all mortality in the USA, Europe and Japan. The lesions result from an excessive, inflammatory-fibroproliferative response to various forms of insult to the endothelium and smooth muscle of the artery wall. A large number of growth factors, cytokines and vasoregulatory molecules participate in this process. Our ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.

10,861 citations

Journal ArticleDOI
20 Feb 1998-Cell
TL;DR: Two novel neuropeptides are identified, both derived from the same precursor by proteolytic processing, that bind and activate two closely related (previously) orphan G protein-coupled receptors in the hypothalamus of rats.

5,162 citations

Journal ArticleDOI
TL;DR: The two hypotheses to explain the pathogenesis of atherosclerosis, the "incrustation" hypothesis and the "lipid" hypothesis, are now known.
Abstract: IN the 19th century there were two major hypotheses to explain the pathogenesis of atherosclerosis: the "incrustation" hypothesis and the "lipid" hypothesis. The incrustation hypothesis of von Rokitansky,1 proposed in 1852 and modified by Duguid,2 suggested that intimal thickening resulted from fibrin deposition, with subsequent organization by fibroblasts and secondary lipid accumulation. The lipid hypothesis, proposed by Virchow3 in 1856, suggested that lipid in the arterial wall represented a transduction of blood lipid, which subsequently formed complexes with acid mucopolysaccharides; lipid accumulated in arterial walls because mechanisms of lipid deposition predominated over those of removal. The two hypotheses are now . . .

3,779 citations

Journal ArticleDOI
TL;DR: Current studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains, and microglial cells are considered the most susceptible sensors of brain pathology.
Abstract: Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.

2,998 citations