scispace - formally typeset
Search or ask a question
Author

Katsutoshi Kokubun

Bio: Katsutoshi Kokubun is an academic researcher from Tokyo Dental College. The author has contributed to research in topics: Medicine & Bone marrow. The author has an hindex of 8, co-authored 21 publications receiving 2809 citations. Previous affiliations of Katsutoshi Kokubun include Harvard University & Japanese Foundation for Cancer Research.

Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive overview of the current understanding of the physiological roles of EVs is provided, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia.
Abstract: In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.

3,690 citations

Journal ArticleDOI
TL;DR: Results indicate that Blast/Etch, O2-Plasma, or UV treatment has potential in the creation and maintenance of superhydrophilic surfaces and enhancing initial attachment of osteoblast-like cells.
Abstract: The objectives of this study were to characterize change in surface properties of tetragonal zirconia polycrystals (TZP) after hydrophilic treatment, and to determine the effect of such changes on initial attachment of osteoblast-like cells. Roughened surfaces were produced by alumina-blasting and acid-etching. Hydrophilic treatment comprised application of immediately after blasting and acid-etching (Blast/Etch), oxygen plasma (O2-Plasma), ultraviolet light (UV). Specimens stored in air were used as a control. The water contact angle was determined and surface analysis was performed using an X-ray photoelectron spectroscopy. Blast/Etch, O2-Plasma and UV specimens showed superhydrophilicity, and these hydrophilic treatments to TZP elicited a marked decrease in carbon content and an increase in hydroxyl groups. Hydrophilic treatments enhanced initial attachment of osteoblast-like cells and a change in cell morphologies. These results indicate that Blast/Etch, O2-Plasma, or UV treatment has potential in the creation and maintenance of superhydrophilic surfaces and enhancing initial attachment of osteoblast-like cells.

61 citations

Journal ArticleDOI
TL;DR: It is demonstrated that myeloma cells drive Treg expansion and activation by secreting type 1 interferon (IFN), and blocking type 1 IFN signaling represents a potential strategy to target immunosuppressive Treg function in MM.
Abstract: Despite significant advances in the treatment of multiple myeloma (MM), most patients succumb to disease progression. One of the major immunosuppressive mechanisms that is believed to play a role in myeloma progression is the expansion of regulatory T cells (Tregs). In this study, we demonstrate that myeloma cells drive Treg expansion and activation by secreting type 1 interferon (IFN). Blocking IFN α and β receptor 1 (IFNAR1) on Tregs significantly decreases both myeloma-associated Treg immunosuppressive function and myeloma progression. Using syngeneic transplantable murine myeloma models and bone marrow (BM) aspirates of MM patients, we found that Tregs were expanded and activated in the BM microenvironment at early stages of myeloma development. Selective depletion of Tregs led to a complete remission and prolonged survival in mice injected with myeloma cells. Further analysis of the interaction between myeloma cells and Tregs using gene sequencing and enrichment analysis uncovered a feedback loop, wherein myeloma-cell-secreted type 1 IFN induced proliferation and expansion of Tregs. By using IFNAR1-blocking antibody treatment and IFNAR1-knockout Tregs, we demonstrated a significant decrease in myeloma-associated Treg proliferation, which was associated with longer survival of myeloma-injected mice. Our results thus suggest that blocking type 1 IFN signaling represents a potential strategy to target immunosuppressive Treg function in MM.

61 citations

Journal ArticleDOI
TL;DR: RNA sequencing of platelets revealed that genes involved in platelets were enriched in patients with smoldering MM (SMM) or MM, and IL-1β is critical to platelet-mediated MM progression and might be a potential target for MM treatment.
Abstract: Purpose: Tumor cell-platelet interactions contribute to tumor progression and metastasis in solid tumors. However, the role of platelets in hematological malignancies is not clear. We investigated the association of platelet activation status with clinical stages in multiple myeloma (MM) patients and explored the role of platelets in MM progression.Experimental Design: Platelets were obtained from healthy donors and MM patients. We examined platelet activation status in MM patients by flow cytometry and transmission electron microscopy. We also observed the enriched pathways that are involved with platelet activation in RNA sequencing of platelets. MM cell lines were used to assess the effect of platelets on MM cell proliferation in vitro and their engraftment in vivo RNA sequencing of MM cell lines was performed to explore molecular mechanisms underlying MM cell-platelet interaction and a CRISPR/Cas9 knockout approach was used for validation.Results: Platelets from MM patients were highly activated with disease progression. RNA sequencing of platelets revealed that genes involved in platelets were enriched in patients with smoldering MM (SMM) or MM. Platelets promoted MM cell proliferation in vitro and contributed to tumor engraftment in bone marrow in vivo RNA sequencing revealed that IL-1β was upregulated in MM cell lines co-cultured with platelets, whereas IL-1β knockout in MM cell lines abrogated the effects of platelets on MM cell proliferation and engraftment in vivoConclusions: Platelets from MM patients were highly activated with disease progression. IL-1β is critical to platelet-mediated MM progression and might be a potential target for MM treatment. Clin Cancer Res; 24(10); 2430-9. ©2018 AACR.

38 citations

Journal ArticleDOI
TL;DR: The creation of artificial proteins through the programming of two motifs, a natural cell attachment motif (RGD) and an artificial Ti-binding motif (minTBP-1) were found to reversibly bind Ti and to bind MC3T3-E1 osteoblast-like cells.

33 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material.
Abstract: Extracellular vesicles are a heterogeneous group of cell-derived membranous structures comprising exosomes and microvesicles, which originate from the endosomal system or which are shed from the plasma membrane, respectively They are present in biological fluids and are involved in multiple physiological and pathological processes Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material Knowledge of the cellular processes that govern extracellular vesicle biology is essential to shed light on the physiological and pathological functions of these vesicles as well as on clinical applications involving their use and/or analysis However, in this expanding field, much remains unknown regarding the origin, biogenesis, secretion, targeting and fate of these vesicles

4,241 citations

Journal ArticleDOI
TL;DR: This work demonstrates the presence of exosomal and nonexosomal subpopulations within small EVs, and proposes their differential separation by immuno-isolation using either CD63, CD81, or CD9, and provides guidelines to define subtypes of EVs for future functional studies.
Abstract: Extracellular vesicles (EVs) have become the focus of rising interest because of their numerous functions in physiology and pathology. Cells release heterogeneous vesicles of different sizes and intracellular origins, including small EVs formed inside endosomal compartments (i.e., exosomes) and EVs of various sizes budding from the plasma membrane. Specific markers for the analysis and isolation of different EV populations are missing, imposing important limitations to understanding EV functions. Here, EVs from human dendritic cells were first separated by their sedimentation speed, and then either by their behavior upon upward floatation into iodixanol gradients or by immuno-isolation. Extensive quantitative proteomic analysis allowing comparison of the isolated populations showed that several classically used exosome markers, like major histocompatibility complex, flotillin, and heat-shock 70-kDa proteins, are similarly present in all EVs. We identified proteins specifically enriched in small EVs, and define a set of five protein categories displaying different relative abundance in distinct EV populations. We demonstrate the presence of exosomal and nonexosomal subpopulations within small EVs, and propose their differential separation by immuno-isolation using either CD63, CD81, or CD9. Our work thus provides guidelines to define subtypes of EVs for future functional studies.

2,366 citations

Journal ArticleDOI
TL;DR: The current knowledge on the specificities of exosomes and other types of extracellular vesicles, and their roles as important agents of cell-to-cell communication are discussed.
Abstract: The ability of exosomes to transfer cargo from donor to acceptor cells, thereby triggering phenotypic changes in the latter, has generated substantial interest in the scientific community. However, the extent to which exosomes differ from other extracellular vesicles in terms of their biogenesis and functions remains ill-defined. Here, we discuss the current knowledge on the specificities of exosomes and other types of extracellular vesicles, and their roles as important agents of cell-to-cell communication.

2,056 citations

Journal ArticleDOI
TL;DR: What is presently known about how exosomes are formed and released by cells is summarized and other cellular processes related to exosome biogenesis and release, such as autophagy and lysosomal exocytosis are presented.
Abstract: Exosomes are nanosized membrane vesicles released by fusion of an organelle of the endocytic pathway, the multivesicular body, with the plasma membrane. This process was discovered more than 30 years ago, and during these years, exosomes have gone from being considered as cellular waste disposal to mediate a novel mechanism of cell-to-cell communication. The exponential interest in exosomes experienced during recent years is due to their important roles in health and disease and to their potential clinical application in therapy and diagnosis. However, important aspects of the biology of exosomes remain unknown. To explore the use of exosomes in the clinic, it is essential that the basic molecular mechanisms behind the transport and function of these vesicles are better understood. We have here summarized what is presently known about how exosomes are formed and released by cells. Moreover, other cellular processes related to exosome biogenesis and release, such as autophagy and lysosomal exocytosis are presented. Finally, methodological aspects related to exosome release studies are discussed.

1,502 citations