scispace - formally typeset
Search or ask a question
Author

Katya Kovac

Bio: Katya Kovac is an academic researcher from Central Queensland University. The author has contributed to research in topics: Sleep inertia & Effects of sleep deprivation on cognitive performance. The author has an hindex of 5, co-authored 10 publications receiving 53 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: There were no observable benefits of breaking up prolonged sitting on glucose metabolism under conditions of sleep restriction, and these findings have implications for behaviour change interventions.

29 citations

Journal ArticleDOI
TL;DR: Female on-call workers were more likely to think about the likelihood of being called, report frequent thoughts about what they would need to do if called, and think about interruptions to family/leisure time as a result of a call.
Abstract: Objective: On-call work is becoming increasingly common in response to service demands. This study had two aims; 1) describe the demographic profile of on-call workers in Australia, and 2) establis...

16 citations

Journal ArticleDOI
TL;DR: Key considerations for research investigating the efficacy of exercise as a sleep inertia countermeasure are proposed, including the need to determine the intensity and duration of exercise required to reduce sleep inertia, as well as testing the effectiveness of exercise across a range of conditions in which the severity of sleep inertia may vary.
Abstract: Sleep inertia, the transitional state of reduced alertness and impaired cognitive performance upon waking, is a safety risk for on-call personnel who can be required to perform critical tasks soon after waking. Sleep inertia countermeasures have previously been investigated; however, none have successfully dissipated sleep inertia within the first 15 min following waking. During this time, on-call personnel could already be driving, providing advice, or performing other safety-critical tasks. Exercise has not yet been investigated as a sleep inertia countermeasure but has the potential to stimulate the key physiological mechanisms that occur upon waking, including changes in cerebral blood flow, the cortisol awakening response, and increases in core body temperature. Here, we examine these physiological processes and hypothesize how exercise can stimulate them, positioning exercise as an effective sleep inertia countermeasure. We then propose key considerations for research investigating the efficacy of exercise as a sleep inertia countermeasure, including the need to determine the intensity and duration of exercise required to reduce sleep inertia, as well as testing the effectiveness of exercise across a range of conditions in which the severity of sleep inertia may vary. Finally, practical considerations are identified, including the recommendation that qualitative field-based research be conducted with on-call personnel to determine the potential constraints in utilizing exercise as a sleep inertia countermeasure in real-world scenarios.

15 citations

Journal ArticleDOI
TL;DR: Anticipation of a stressful task on sleep inertia, while on-call was investigated to suggest that anticipating a high-stress task when on- call, does not impact sleep inertia severity.

12 citations

Journal ArticleDOI
TL;DR: Results from this study suggest that exercise performed 90 min before bed does not negatively impact on sleep inertia, and future studies should investigate the impact of exercise intensity, duration and timing on sleep and subsequent sleep inertia.
Abstract: Sleep inertia is the transitional state marked by impaired cognitive performance and reduced vigilance upon waking. Exercising before bed may increase the amount of slow-wave sleep within the sleep period, which has previously been associated with increased sleep inertia. Healthy males (n = 12) spent 3 nights in a sleep laboratory (1-night washout period between each night) and completed one of the three conditions on each visit - no exercise, aerobic exercise (30 min cycling at 75% heart rate), and resistance exercise (six resistance exercises, three sets of 10 repetitions). The exercise conditions were completed 90 min prior to bed. Sleep was measured using polysomnography. Upon waking, participants completed five test batteries every 15 min, including the Karolinska Sleepiness Scale, a Psychomotor Vigilance Task, and the Spatial Configuration Task. Two separate linear mixed-effects models were used to assess: (a) the impact of condition; and (b) the amount of slow-wave sleep, on sleep inertia. There were no significant differences in sleep inertia between conditions, likely as a result of the similar sleep amount, sleep structure and time of awakening between conditions. The amount of slow-wave sleep impacted fastest 10% reciprocal reaction time on the Psychomotor Vigilance Task only, whereby more slow-wave sleep improved performance; however, the magnitude of this relationship was small. Results from this study suggest that exercise performed 90 min before bed does not negatively impact on sleep inertia. Future studies should investigate the impact of exercise intensity, duration and timing on sleep and subsequent sleep inertia.

8 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The use of PA breaks during sitting moderately attenuated post-prandial glucose, insulin, and TAG, with greater glycaemic attenuation in people with higher BMI.
Abstract: Physical activity (PA) breaks in sitting time might attenuate metabolic markers relevant to the prevention of type 2 diabetes. The primary aim of this paper was to systematically review and meta-analyse trials that compared the effects of breaking up prolonged sitting with bouts of PA throughout the day (INT) versus continuous sitting (SIT) on glucose, insulin and triacylglycerol (TAG) measures. A second aim was to compare the effects of INT versus continuous exercise (EX) on glucose, insulin and TAG measures. The review followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) recommendations. Eligibility criteria consisted of trials comparing INT vs. SIT or INT vs. one bout of EX before or after sitting, in participants aged 18 or above, who were classified as either metabolically healthy or impaired, but not with other major health conditions such as chronic obstructive pulmonary disease or peripheral arterial disease. A total of 42 studies were included in the overall review, whereas a total of 37 studies were included in the meta-analysis. There was a standardised mean difference (SMD) of − 0.54 (95% CI − 0.70, − 0.37, p = 0.00001) in favour of INT compared to SIT for glucose. With respect to insulin, there was an SMD of − 0.56 (95% CI − 0.74, − 0.38, p = 0.00001) in favour of INT. For TAG, there was an SMD of − 0.26 (95% CI − 0.44, − 0.09, p = 0.002) in favour of INT. Body mass index (BMI) was associated with glucose responses (β = − 0.05, 95% CI − 0.09, − 0.01, p = 0.01), and insulin (β = − 0.05, 95% CI − 0.10, − 0.006, p = 0.03), but not TAG (β = 0.02, 95% CI − 0.02, 0.06, p = 0.37). When energy expenditure was matched, there was an SMD of − 0.26 (95% CI − 0.50, − 0.02, p = 0.03) in favour of INT for glucose, but no statistically significant SMDs for insulin, i.e. 0.35 (95% CI − 0.37, 1.07, p = 0.35), or TAG i.e. 0.08 (95% CI − 0.22, 0.37, p = 0.62). It is worth noting that there was possible publication bias for TAG outcomes when PA breaks were compared with sitting. The use of PA breaks during sitting moderately attenuated post-prandial glucose, insulin, and TAG, with greater glycaemic attenuation in people with higher BMI. There was a statistically significant small advantage for PA breaks over continuous exercise for attenuating glucose measures when exercise protocols were energy matched, but no statistically significant differences for insulin and TAG. PROSPERO Registration: CRD42017080982. CRD42017080982.

134 citations

Journal ArticleDOI
TL;DR: It is suggested that as prolonged sitting and short sleep duration influence the same cardiometabolic parameters, there is potential for short sleep to attenuate the positive impact of breaking up prolonged sitting with physical activity, which could improve predictors of cardiometric disease.
Abstract: Cardiometabolic disease poses a serious health and economic burden worldwide and its prevalence is predicted to increase. Prolonged sitting, lack of physical activity, poor diet, and short sleep duration are ubiquitous behaviors in modern society, and all are independent risk factors in the development of cardiometabolic disease. Existing evidence demonstrates that breaking up prolonged periods of sitting is beneficial for cardiometabolic health, however, studies have not controlled for prior sleep duration. This article examines how prolonged sitting and short sleep duration independently contribute to cardiometabolic risk, and how breaking up sitting and obtaining adequate sleep may reduce this risk. We suggest that as prolonged sitting and short sleep duration influence the same cardiometabolic parameters, there is potential for short sleep to attenuate the positive impact of breaking up prolonged sitting with physical activity. Likewise, breaking up prolonged sitting and obtaining adequate sleep together could improve predictors of cardiometabolic disease, i.e., the combined effect may be stronger than either alone. To explore these perspectives, we propose a research agenda to investigate the relationship between breaking up prolonged sitting with physical activity and short sleep duration. This will provide an evidence-base for informing the design of interventions to reduce the burden of cardiometabolic disease on communities worldwide.

36 citations

Journal ArticleDOI
TL;DR: In this paper, a systematic review was conducted to determine how studies evaluated napping behavior in athletes (frequency, duration, timing and measurement); and explore how napping impacted physical performance, cognitive performance, perceptual measures (e.g., fatigue, muscle soreness, sleepiness and alertness), psychological state and night-time sleep in athletes.
Abstract: Purpose: The objective of this systematic review was to 1) determine how studies evaluated napping behavior in athletes (frequency, duration, timing and measurement); 2) explore how napping impacted physical performance, cognitive performance, perceptual measures (eg, fatigue, muscle soreness, sleepiness and alertness), psychological state and night-time sleep in athletes. Methods: Five bibliographic databases were searched from database inception to 11 August 2020. Observational and experimental studies comprising able-bodied athletes (mean age ≥ 12 years), published in English, in peer-reviewed journal papers were included. The Downs and Black Quality Assessment Checklist was used for quality appraisal. Results: Thirty-seven studies were identified of moderate quality. Most studies did not include consistent information regarding nap frequency, duration, and timing. Napping may be beneficial for a range of outcomes that benefit athletes (eg, physical and cognitive performance, perceptual measures, psychological state and night-time sleep). In addition, napping presents athletes with the opportunity to supplement their night-time sleep without compromising sleep quality. Conclusion: Athletes may consider napping between 20 to 90 min in duration and between 13:00 and 16:00 hours. Finally, athletes should allow 30 min to reduce sleep inertia prior to training or competition to obtain better performance outcomes. Future studies should include comprehensive recordings of nap duration and quality, and consider using sleep over a 24 hour period (daytime naps and night-time sleep period), specifically using objective methods of sleep assessment (eg, polysomnography/actigraphy).

36 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of prolonged sitting with standing or light-intensity exercises at the workplace is recognized as a potential measure in improving cognition, and preliminary evidence from acute laboratory experiments has enabled formulating hypothesis on the possible mechanistic pathways.
Abstract: Prolonged (excessive) sitting is detrimentally associated with cardiovascular, metabolic and mental health. Moreover, prolonged sitting has been associated with poor executive function, memory, attention and visuospatial skills, which are important cognitive aspects of work performance. Breaking up prolonged sitting with standing or light-intensity exercises at the workplace is recognized as a potential measure in improving cognition. However, preliminary evidence, primarily from acute laboratory experiments, has enabled formulating hypothesis on the possible mechanistic pathways. Hence, the aim of this mapping review is to gather preliminary evidence and substantiate possible physiological mechanisms underpinning the putative effects of breaking prolonged sitting on improving cognitive function among sedentary office workers. We searched four databases to identify relevant studies that explored the effects of uninterrupted sitting on cognitive function. First, we introduce how prolonged sitting increases the risks of hyperglycemia, autonomic stability, inflammation, adverse hormonal changes and restrictions in cerebral blood flow (CBF) and alters cognitive function. Second, we elucidate the direct and indirect effects of breaking up prolonged sitting time that may prevent a decline in cognitive performance by influencing glycaemic variability, autonomic stability, hormones (brain derived neurotrophic factor, dopamine, serotonin), vascular functions, and CBF. We highlight the importance of breaking up prolonged sitting on metabolic, vascular and endocrine functions, which in turn may improve cognitive functions and eventually foster work productivity. Improved synaptic transmission or neuroplasticity due to increased brain glucose and mitochondrial metabolism, increased endothelial shear and CBF, increased brain neurotrophic factors (dopamine) and accelerated anti-inflammatory functions are some of the hypothetical mechanisms underpinning improved cognitive functions. We postulate that improving cognitive function by breaking up prolonged sitting periods is biologically plausible with the myriad of (suggested) physiological mechanisms. Future experimental studies to ascertain the aforementioned hypothetical mechanisms and clinical trials to break sedentary behavior and improve cognitive functions in sedentary office workers are warranted.

34 citations