scispace - formally typeset
Search or ask a question
Author

Kaushik Biswas

Bio: Kaushik Biswas is an academic researcher from Bose Institute. The author has contributed to research in topics: Apoptosis & T cell. The author has an hindex of 21, co-authored 29 publications receiving 2360 citations. Previous affiliations of Kaushik Biswas include Central Food Technological Research Institute & Indian Institute of Chemical Biology.

Papers
More filters
Journal Article
TL;DR: Safety evaluation studies indicate that both turmeric and curcumin are well tolerated at a very high dose without any toxic effects, and have the potential for the development of modern medicine for the treatment of various diseases.
Abstract: Turmeric (Curcuma longa) is extensively used as a spice, food preservative and colouring material in India, China and South East Asia. It has been used in traditional medicine as a household remedy for various diseases, including biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism and sinusitis. For the last few decades, extensive work has been done to establish the biological activities and pharmacological actions of turmeric and its extracts. Curcumin (diferuloylmethane), the main yellow bioactive component of turmeric has been shown to have a wide spectrum of biological actions. These include its antiinflammatory, antioxidant, anticarcinogenic, antimutagenic, anticoagulant, antifertility, antidiabetic, antibacterial, antifungal, antiprotozoal, antiviral, antifibrotic, antivenom, antiulcer, hypotensive and hypocholesteremic activities. Its anticancer effect is mainly mediated through induction of apoptosis. Its antiinflammatory, anticancer and antioxidant roles may be clinically exploited to control rheumatism, carcinogenesis and oxidative stress-related pathogenesis. Clinically, curcumin has already been used to reduce post-operative inflammation. Safety evaluation studies indicate that both turmeric and curcumin are well tolerated at a very high dose without any toxic effects. Thus, both turmeric and curcumin have the potential for the development of modern medicine for the treatment of various diseases.

1,007 citations

Journal ArticleDOI
TL;DR: Omeprazole plays a significant role in gastroprotection by acting as a potent antioxidant and antiapoptotic molecule.

276 citations

Journal ArticleDOI
TL;DR: It is suggested that curcumin protects gastric damage by efficient removal of H( 2)O(2) and H (2)O-derived ()OH by preventing peroxidase inactivation by indomethacin.

156 citations

Journal ArticleDOI
TL;DR: It is concluded that gastric mucosal integrity is maintained by an interplay of some aggressive and defensive factors controlling apoptotic cell death and cell proliferation and smoking potentiates ulcer by disturbing this balance.
Abstract: Peptic ulcer is a common disorder of gastrointestinal system and its pathogenesis is multifactorial, where smoking and nicotine have significant adverse effects. Smoking and chronic nicotine treatment stimulate basal acid output which is more pronounced in the smokers having duodenal ulcer. This increased gastric acid secretion is mediated through the stimulation of H2-receptor by histamine released after mast cell degranulation and due to the increase of the functional parietal cell volume or secretory capacity in smokers. Smoking and nicotine stimulate pepsinogen secretion also by increasing chief cell number or with an enhancement of their secretory capacity. Long-term nicotine treatment in rats also significantly decreases total mucus neck cell population and neck-cell mucus volume. Smoking also increases bile salt reflux rate and gastric bile salt concentration thereby increasing duodenogastric reflux that raises the risk of gastric ulcer in smokers. Smoking and nicotine not only induce ulceration, but they also potentiate ulceration caused by H. pylori, alcohol, nonsteroidal anti-inflammatory drugs or cold restrain stress. Polymorphonuclear neutrophils (PMN) play an important role in ulcerogenesis through oxidative damage of the mucosa by increasing the generation of reactive oxygen intermediates (ROI), which is potentiated by nicotine and smoking. Nicotine by a cAMP-protein kinase A signaling system elevates the endogenous vasopressin level, which plays an aggressive role in the development of gastroduodenal lesions. Smoking increases production of platelet activating factor (PAF) and endothelin, which are potent gastric ulcerogens. Cigarette smoking and nicotine reduce the level of circulating epidermal growth factor (EGF) and decrease the secretion of EGF from the salivary gland, which are necessary for gastric mucosal cell renewal. Nicotine also decreases prostaglandin generation in the gastric mucosa of smokers, thereby making the mucosa susceptible to ulceration. ROI generation and ROI-mediated gastric mucosal cell apoptosis are also considered to be important mechanism for aggravation of ulcer by cigarette smoke or nicotine. Both smoking and nicotine reduce angiogenesis in the gastric mucosa through inhibition of nitric oxide synthesis thereby arresting cell renewal process. Smoking or smoke extract impairs both spontaneous and drug-induced healing of ulcer. Smoke extract also inhibits gastric mucosal cell proliferation by reducing ornithine decarboxylase activity, which synthesises growth-promoting polyamines. It is concluded that gastric mucosal integrity is maintained by an interplay of some aggressive and defensive factors controlling apoptotic cell death and cell proliferation and smoking potentiates ulcer by disturbing this balance.

135 citations

Journal ArticleDOI
TL;DR: Neem bark extract has therapeutic potential for controlling gastric hypersecretion and gastroesophageal and gastroduodenal ulcers and various blood parameters for organ toxicity after Neem treatment at the doses suggested remained more or less close to the normal values suggesting no significant adverse effects.

122 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Different strategies employed by tumors to thwart immune responses, including tumor-induced impairment of antigen presentation, the activation of negative costimulatory signals, and the elaboration of immunosuppressive factors are discussed.
Abstract: Despite major advances in understanding the mechanisms leading to tumor immunity, a number of obstacles hinder the successful translation of mechanistic insights into effective tumor immunotherapy. Such obstacles include the ability of tumors to foster a tolerant microenvironment and the activation of a plethora of immunosuppressive mechanisms, which may act in concert to counteract effective immune responses. Here we discuss different strategies employed by tumors to thwart immune responses, including tumor-induced impairment of antigen presentation, the activation of negative costimulatory signals, and the elaboration of immunosuppressive factors. In addition, we underscore the influence of regulatory cell populations that may contribute to this immunosuppressive network; these include regulatory T cells, natural killer T cells, and distinct subsets of immature and mature dendritic cells. The current wealth of preclinical information promises a future scenario in which the synchronized blockade of immunosuppressive mechanisms may be effective in combination with other conventional strategies to overcome immunological tolerance and promote tumor regression.

1,602 citations

Book ChapterDOI
TL;DR: Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses.
Abstract: Turmeric, derived from the plant Curcuma longa, is a gold-colored spice commonly used in the Indian subcontinent, not only for health care but also for the preservation of food and as a yellow dye for textiles. Curcumin, which gives the yellow color to turmeric, was first isolated almost two centuries ago, and its structure as diferuloylmethane was determined in 1910. Since the time of Ayurveda (1900 Bc) numerous therapeutic activities have been assigned to turmeric for a wide variety of diseases and conditions, including those of the skin, pulmonary, and gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders. Extensive research within the last half century has proven that most of these activities, once associated with turmeric, are due to curcumin. Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses. These effects are mediated through the regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other enzymes. Curcumin exhibits activities similar to recently discovered tumor necrosis factor blockers (e.g., HUMIRA, REMICADE, and ENBREL), a vascular endothelial cell growth factor blocker (e.g., AVASTIN), human epidermal growth factor receptor blockers (e.g., ERBITUX, ERLOTINIB, and GEFTINIB), and a HER2 blocker (e.g., HERCEPTIN). Considering the recent scientific bandwagon that multitargeted therapy is better than monotargeted therapy for most diseases, curcumin can be considered an ideal "Spice for Life".

1,467 citations

Journal ArticleDOI
TL;DR: Unraveling the signaling events initiated at the cellular level by oxidative free radicals as well as the physiological responses to such stress is important to better understand disease pathogenesis and to develop new therapies to manage a variety of conditions for which current therapies are not always sufficient.
Abstract: Reactive oxygen species (ROS) are generated as by-products of normal cellular metabolic activities. Superoxide dismutase, glutathione peroxidase, and catalase are the enzymes involved in protecting cells from the damaging effects of ROS. ROS are produced in response to ultraviolet radiation, cigarette smoking, alcohol, nonsteroidal anti-inflammatory drugs, ischemia-reperfusion injury, chronic infections, and inflammatory disorders. Disruption of normal cellular homeostasis by redox signaling may result in cardiovascular, neurodegenerative diseases and cancer. ROS are produced within the gastrointestinal (GI) tract, but their roles in pathophysiology and disease pathogenesis have not been well studied. Despite the protective barrier provided by the mucosa, ingested materials and microbial pathogens can induce oxidative injury and GI inflammatory responses involving the epithelium and immune/inflammatory cells. The pathogenesis of various GI diseases including peptic ulcers, gastrointestinal cancers, and inflammatory bowel disease is in part due to oxidative stress. Unraveling the signaling events initiated at the cellular level by oxidative free radicals as well as the physiological responses to such stress is important to better understand disease pathogenesis and to develop new therapies to manage a variety of conditions for which current therapies are not always sufficient.

1,462 citations

Journal ArticleDOI
TL;DR: RCC patients with tumor B7-H1 may function as a key determinant in RCC, abrogating immune responses directed against this immunogenic tumor, causing rapid cancer progression and accelerated rates of mortality.
Abstract: B7-H1 participates in T-cell costimulation functioning as a negative regulator of immunity. Recent observations suggest that B7-H1 is expressed by renal cell carcinoma (RCC) tumor cells and is associated with poor prognosis. However, outcome analyses have been restricted to patients with fresh-frozen tissue and limited follow-up. We report the clinical effect of B7-H1 in RCC patients with a median of 10 years of follow-up. Between 1990 and 1994, 306 patients underwent nephrectomy for clear cell RCC and had paraffin tissue available for review. We did immunohistochemistry with anti-B7-H1 and conducted outcome analyses. Among the 306 patients, 73 (23.9%) harbored tumors with B7-H1 expression. Patients with tumor B7-H1 were at a significantly increased risk of both death from RCC [risk ratio (RR), 3.92; P < 0.001] and overall mortality (RR, 2.37; P < 0.001). The 5-year cancer-specific survival rates were 41.9% and 82.9% for patients with and without tumor B7-H1, respectively. In a multivariate model, tumor B7-H1 remained associated with cancer-specific death even after adjusting for tumor-node-metastasis stage, grade, and performance status (RR, 2.00; P = 0.003). In the subset of 268 patients with localized RCC, tumor B7-H1 was significantly associated with metastatic cancer progression (RR, 3.46; P < 0.001) and death from RCC (RR, 4.13; P < 0.001) even after adjusting for stage, grade, and performance status (RR, 1.78, P = 0.036). RCC patients with tumor B7-H1 are at significant risk of rapid cancer progression and accelerated rates of mortality. B7-H1 may function as a key determinant in RCC, abrogating immune responses directed against this immunogenic tumor.

860 citations