scispace - formally typeset
Search or ask a question
Author

Kaya Tutuncuoglu

Bio: Kaya Tutuncuoglu is an academic researcher from Pennsylvania State University. The author has contributed to research in topics: Energy harvesting & Communication channel. The author has an hindex of 24, co-authored 40 publications receiving 4946 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors consider a point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel, and they consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session.
Abstract: Wireless systems comprised of rechargeable nodes have a significantly prolonged lifetime and are sustainable. A distinct characteristic of these systems is the fact that the nodes can harvest energy throughout the duration in which communication takes place. As such, transmission policies of the nodes need to adapt to these harvested energy arrivals. In this paper, we consider optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel. We consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session. We optimize these objectives by controlling the time sequence of transmit powers subject to energy storage capacity and causality constraints. We, first, study optimal offline policies. We introduce a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions. We show the optimality of an adaptive directional water-filling algorithm for the throughput maximization problem. We solve the transmission completion time minimization problem by utilizing its equivalence to its throughput maximization counterpart. Next, we consider online policies. We use stochastic dynamic programming to solve for the optimal online policy that maximizes the average number of bits delivered by a deadline under stochastic fading and energy arrival processes with causal channel state feedback. We also propose near-optimal policies with reduced complexity, and numerically study their performances along with the performances of the offline and online optimal policies under various different configurations.

1,130 citations

Posted Content
TL;DR: This paper considers optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel, and introduces a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions.
Abstract: Wireless systems comprised of rechargeable nodes have a significantly prolonged lifetime and are sustainable. A distinct characteristic of these systems is the fact that the nodes can harvest energy throughout the duration in which communication takes place. As such, transmission policies of the nodes need to adapt to these harvested energy arrivals. In this paper, we consider optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel. We consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session. We optimize these objectives by controlling the time sequence of transmit powers subject to energy storage capacity and causality constraints. We, first, study optimal offline policies. We introduce a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions. We show the optimality of an adaptive directional water-filling algorithm for the throughput maximization problem. We solve the transmission completion time minimization problem by utilizing its equivalence to its throughput maximization counterpart. Next, we consider online policies. We use stochastic dynamic programming to solve for the optimal online policy that maximizes the average number of bits delivered by a deadline under stochastic fading and energy arrival processes with causal channel state feedback. We also propose near-optimal policies with reduced complexity, and numerically study their performances along with the performances of the offline and online optimal policies under various different configurations.

950 citations

Journal ArticleDOI
TL;DR: This work considers transmission policies for rechargeable nodes with energy harvesting battery equipped nodes, and optimum solutions for two related problems are identified, including the transmission policy that maximizes the short term throughput.
Abstract: Wireless networks with energy harvesting battery equipped nodes are quickly emerging as a viable option for future wireless networks with extended lifetime Equally important to their counterpart in the design of energy harvesting radios are the design principles that this new networking paradigm calls for In particular, unlike wireless networks considered to date, the energy replenishment process and the storage constraints of the rechargeable batteries need to be taken into account in designing efficient transmission strategies In this work, such transmission policies for rechargeable nodes are considered, and optimum solutions for two related problems are identified Specifically, the transmission policy that maximizes the short term throughput, ie, the amount of data transmitted in a finite time horizon is found In addition, the relation of this optimization problem to another, namely, the minimization of the transmission completion time for a given amount of data is demonstrated, which leads to the solution of the latter as well The optimum transmission policies are identified under the constraints on energy causality, ie, energy replenishment process, as well as the energy storage, ie, battery capacity For battery replenishment, a model with discrete packets of energy arrivals is considered The necessary conditions that the throughput-optimal allocation satisfies are derived, and then the algorithm that finds the optimal transmission policy with respect to the short-term throughput and the minimum transmission completion time is given Numerical results are presented to confirm the analytical findings

784 citations

Posted Content
TL;DR: In this paper, the authors considered the problem of minimizing the transmission completion time for a given amount of data in a finite time horizon and derived the necessary conditions that the throughput-optimal allocation satisfies, and then provided the algorithm that finds the optimal transmission policy with respect to the short-term throughput and the minimum transmission completion times.
Abstract: Wireless networks with energy harvesting battery powered nodes are quickly emerging as a viable option for future wireless networks with extended lifetime. Equally important to their counterpart in the design of energy harvesting radios are the design principles that this new networking paradigm calls for. In particular, unlike wireless networks considered up to date, the energy replenishment process and the storage constraints of the rechargeable batteries need to be taken into account in designing efficient transmission strategies. In this work, we consider such transmission policies for rechargeable nodes, and identify the optimum solution for two related problems. Specifically, the transmission policy that maximizes the short term throughput, i.e., the amount of data transmitted in a finite time horizon is found. In addition, we show the relation of this optimization problem to another, namely, the minimization of the transmission completion time for a given amount of data, and solve that as well. The transmission policies are identified under the constraints on energy causality, i.e., energy replenishment process, as well as the energy storage, i.e., battery capacity. The power-rate relationship for this problem is assumed to be an increasing concave function, as dictated by information theory. For battery replenishment, a model with discrete packets of energy arrivals is considered. We derive the necessary conditions that the throughput-optimal allocation satisfies, and then provide the algorithm that finds the optimal transmission policy with respect to the short-term throughput and the minimum transmission completion time. Numerical results are presented to confirm the analytical findings.

659 citations

Journal ArticleDOI
TL;DR: The convergence of the proposed iterative coordinate descent method for the problem is proved and the short-term throughput maximizing offline power allocation policy is found.
Abstract: This paper considers a two-user Gaussian interference channel with energy harvesting transmitters. Different than conventional battery powered wireless nodes, energy harvesting transmitters have to adapt transmission to availability of energy at a particular instant. In this setting, the optimal power allocation problem to maximize the sum throughput with a given deadline is formulated. The convergence of the proposed iterative coordinate descent method for the problem is proved and the short-term throughput maximizing offline power allocation policy is found. Examples for interference regions with known sum capacities are given with directional waterfilling interpretations. Next, stochastic data arrivals are addressed. Finally, online and/or distributed near-optimal policies are proposed. Performance of the proposed algorithms are demonstrated through simulations.

213 citations


Cited by
More filters
Journal ArticleDOI

2,415 citations

Journal ArticleDOI
TL;DR: This paper presents an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications, and explores various key design issues according to the network types, i.e., single-hop networks, multiantenna networks, relay networks, and cognitive radio networks.
Abstract: Radio frequency (RF) energy transfer and harvesting techniques have recently become alternative methods to power the next-generation wireless networks As this emerging technology enables proactive energy replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service requirements In this paper, we present a comprehensive literature review on the research progresses in wireless networks with RF energy harvesting capability, which is referred to as RF energy harvesting networks (RF-EHNs) First, we present an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications Then, we present the background in circuit design as well as the state-of-the-art circuitry implementations and review the communication protocols specially designed for RF-EHNs We also explore various key design issues in the development of RF-EHNs according to the network types, ie, single-hop networks, multiantenna networks, relay networks, and cognitive radio networks Finally, we envision some open research directions

2,352 citations

Journal ArticleDOI
TL;DR: In this paper, a low-complexity online algorithm is proposed, namely, the Lyapunov optimization-based dynamic computation offloading algorithm, which jointly decides the offloading decision, the CPU-cycle frequencies for mobile execution, and the transmit power for computing offloading.
Abstract: Mobile-edge computing (MEC) is an emerging paradigm to meet the ever-increasing computation demands from mobile applications. By offloading the computationally intensive workloads to the MEC server, the quality of computation experience, e.g., the execution latency, could be greatly improved. Nevertheless, as the on-device battery capacities are limited, computation would be interrupted when the battery energy runs out. To provide satisfactory computation performance as well as achieving green computing, it is of significant importance to seek renewable energy sources to power mobile devices via energy harvesting (EH) technologies. In this paper, we will investigate a green MEC system with EH devices and develop an effective computation offloading strategy. The execution cost , which addresses both the execution latency and task failure, is adopted as the performance metric. A low-complexity online algorithm is proposed, namely, the Lyapunov optimization-based dynamic computation offloading algorithm, which jointly decides the offloading decision, the CPU-cycle frequencies for mobile execution, and the transmit power for computation offloading. A unique advantage of this algorithm is that the decisions depend only on the current system state without requiring distribution information of the computation task request, wireless channel, and EH processes. The implementation of the algorithm only requires to solve a deterministic problem in each time slot, for which the optimal solution can be obtained either in closed form or by bisection search. Moreover, the proposed algorithm is shown to be asymptotically optimal via rigorous analysis. Sample simulation results shall be presented to corroborate the theoretical analysis as well as validate the effectiveness of the proposed algorithm.

1,385 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider a point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel, and they consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session.
Abstract: Wireless systems comprised of rechargeable nodes have a significantly prolonged lifetime and are sustainable. A distinct characteristic of these systems is the fact that the nodes can harvest energy throughout the duration in which communication takes place. As such, transmission policies of the nodes need to adapt to these harvested energy arrivals. In this paper, we consider optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel. We consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session. We optimize these objectives by controlling the time sequence of transmit powers subject to energy storage capacity and causality constraints. We, first, study optimal offline policies. We introduce a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions. We show the optimality of an adaptive directional water-filling algorithm for the throughput maximization problem. We solve the transmission completion time minimization problem by utilizing its equivalence to its throughput maximization counterpart. Next, we consider online policies. We use stochastic dynamic programming to solve for the optimal online policy that maximizes the average number of bits delivered by a deadline under stochastic fading and energy arrival processes with causal channel state feedback. We also propose near-optimal policies with reduced complexity, and numerically study their performances along with the performances of the offline and online optimal policies under various different configurations.

1,130 citations

Journal ArticleDOI
TL;DR: Numerical results show that by optimizing the trajectory of the relay and power allocations adaptive to its induced channel variation, mobile relaying is able to achieve significant throughput gains over the conventional static relaying.
Abstract: In this paper, we consider a novel mobile relaying technique, where the relay nodes are mounted on unmanned aerial vehicles (UAVs) and hence are capable of moving at high speed. Compared with conventional static relaying, mobile relaying offers a new degree of freedom for performance enhancement via careful relay trajectory design. We study the throughput maximization problem in mobile relaying systems by optimizing the source/relay transmit power along with the relay trajectory, subject to practical mobility constraints (on the UAV’s speed and initial/final relay locations), as well as the information-causality constraint at the relay. It is shown that for the fixed relay trajectory, the throughput-optimal source/relay power allocations over time follow a “staircase” water filling structure, with non-increasing and non-decreasing water levels at the source and relay, respectively. On the other hand, with given power allocations, the throughput can be further improved by optimizing the UAV’s trajectory via successive convex optimization. An iterative algorithm is thus proposed to optimize the power allocations and relay trajectory alternately. Furthermore, for the special case with free initial and final relay locations, the jointly optimal power allocation and relay trajectory are derived. Numerical results show that by optimizing the trajectory of the relay and power allocations adaptive to its induced channel variation, mobile relaying is able to achieve significant throughput gains over the conventional static relaying.

1,079 citations