scispace - formally typeset
Search or ask a question
Author

Kazimierz Kuczyński

Bio: Kazimierz Kuczyński is an academic researcher from Warsaw University of Technology. The author has contributed to research in topics: Forming limit diagram & Sheet metal. The author has an hindex of 3, co-authored 3 publications receiving 2136 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a theoretical analysis of the process of the generation of the groove based on anisotropic plasticity theory is presented, and the system of equations derived was solved numerically with the aid of a computer, which enabled the limiting strain of the sheet metal to be determined as a function of the material.

1,814 citations

Journal ArticleDOI
TL;DR: In this article, the formation of a groove, which appears before fracture in sheet metal subject to tension, is presented, and is based on the assumption of initial nonhomogeneity of the material in order to facilitate the determination of the limit strain.

435 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a rate dependent constitutive model is developed for polycrystals subjected to arbitrarily large strains, and the model is used to predict deformation textures and large-strain strain hardening behavior following various stressstrain histories for single phase f.c. aggregates that deform by crystallographic slip.

1,557 citations

Journal ArticleDOI
TL;DR: In this paper, a combination of experimental and simulation techniques were used to investigate the plastic behavior of wrought magnesium alloy and found that an increased activity of non-basal dislocations provides a self-consistent explanation for the observed changes in the anisotropy with increasing temperature.

1,427 citations

Journal ArticleDOI
TL;DR: In this article, the effects of void nucleation occurring during the deformation history on forming limit curves are considered for both in-plane and punch stretching employing a constitutive model of a porous plastic solid.
Abstract: The effects of void nucleation occurring during the deformation history on forming limit curves are considered for both in-plane and punch stretching employing a constitutive model of a porous plastic solid. Both plastic strain controlled and stress controlled nucleation processes are simulated by a two parameter void nucleation criterion. For in-plane stretching, plastic strain controlled nucleation can have, in certain circumstances, a significantly destabilizing effect on the forming limit curve. However, within the framework of plane stress theory which neglects the enhance­ ment of the hydrostatic stress due to necking, a stress controlled nucleation process is not found to be significantly destabilizing. In punch stretching a ductile rupture criterion, which limits the maximum volume fraction of voids, as well as the ap­ pearance of a well defined thickness trough, is adopted as a localized necking criterion. Only plastic strain controlled void nucleation is considered here in out-ofplane stretching. The resulting forming limit curves have the same shape as those obtained previously with void nucleation neglected.

1,239 citations

Journal ArticleDOI
TL;DR: In this article, a yield function that describes the behavior of orthortropic sheets, metals exhibiting planar anisotropy and subjected to plane stress conditions is proposed, which is shown to give a reasonable approximation to plastic potentials calculated with the Taylor/Bishop and Hill theory of polycrystalline plasticity for plane stress states.

1,083 citations