scispace - formally typeset
Search or ask a question
Author

Kazuaki Ohtsubo

Bio: Kazuaki Ohtsubo is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Glycosylation & Antigen. The author has an hindex of 7, co-authored 9 publications receiving 3001 citations. Previous affiliations of Kazuaki Ohtsubo include Sanford-Burnham Institute for Medical Research.

Papers
More filters
Journal ArticleDOI
08 Sep 2006-Cell
TL;DR: This review discusses the increasingly sophisticated molecular mechanisms being discovered by which mammalian glycosylation governs physiology and contributes to disease.

2,376 citations

Journal ArticleDOI
29 Dec 2005-Cell
TL;DR: It is inferred that beta cell glucose-transporter glycosylation mediates a link between diet and insulin production that typically suppresses the pathogenesis of type 2 diabetes.

373 citations

Journal ArticleDOI
TL;DR: A combination of molecular events in human and mouse pancreatic beta cells, induced by elevated levels of free fatty acids or by administration of a high-fat diet with associated obesity, that comprise a pathogenic pathway to diabetes are reported.
Abstract: Many mechanisms contribute to type 2 diabetes, but few connections have established a pathway from diet to disease. Jamey Marth and his colleagues now provide a pathway to diet-induced obesity–associated diabetes that identifies defects in protein glycosylation in pancreatic beta cells as an early pathogenic step. This change results in reduced glucose transport and induces systemic disease signs, including impaired glucose tolerance and insulin resistance.

202 citations

Journal ArticleDOI
TL;DR: The results demonstrate the critical function of N-glycan-linked 6-sulfo sialyl Lewis X in L-selectin-dependent lymphocyte homing and recruitment in wild-type and mutant mice.
Abstract: Lymphocyte homing is mediated by specific interaction between L-selectin on lymphocytes and the carbohydrate ligand 6-sulfo sialyl Lewis X on high endothelial venules. Here we generated mice lacking both core 1 extension and core 2 branching enzymes to assess the functions of O-glycan-borne L-selectin ligands in vivo. Mutant mice maintained robust lymphocyte homing, yet they lacked O-glycan L-selectin ligands. Biochemical analyses identified a class of N-glycans bearing the 6-sulfo sialyl Lewis X L-selectin ligand in high endothelial venules. These N-glycans supported the binding of L-selectin to high endothelial venules in vitro and contributed in vivo to O-glycan-independent lymphocyte homing in wild-type and mutant mice. Our results demonstrate the critical function of N-glycan-linked 6-sulfo sialyl Lewis X in L-selectin-dependent lymphocyte homing and recruitment.

172 citations

Journal ArticleDOI
TL;DR: It is found that ppGalNAcT-1 plays key roles in cell and glycoprotein selective functions that modulate the hematopoietic system and provides a distinctive repertoire of advantageous functions that support vascular responses and humoral immunity.
Abstract: Core-type protein O glycosylation is initiated by polypeptide N-acetylgalactosamine (GalNAc) transferase (ppGalNAcT) activity and produces the covalent linkage of serine and threonine residues of proteins. More than a dozen ppGalNAcTs operate within multicellular organisms, and they differ with respect to expression patterns and substrate selectivity. These distinctive features imply that each ppGalNAcT may differentially modulate regulatory processes in animal development, physiology, and perhaps disease. We found that ppGal NAcT-1 plays key roles in cell and glycoprotein selective functions that modulate the hematopoietic system. Loss of ppGalNAcT-1 activity in the mouse results in a bleeding disorder which tracks with reduced plasma levels of blood coagulation factors V, VII, VIII, IX, X, and XII. ppGalNAcT-1 further supports leukocyte trafficking and residency in normal homeostatic physiology as well as during inflammatory responses, in part by providing a scaffold for the synthesis of selectin ligands expressed by neutrophils and endothelial cells of peripheral lymph nodes. Animals lacking ppGalNAcT-1 are also markedly impaired in immunoglobulin G production, coincident with increased germinal center B-cell apoptosis and reduced levels of plasma B cells. These findings reveal that the initiation of protein O glycosylation by ppGal NAcT-1 provides a distinctive repertoire of advantageous functions that support vascular responses and humoral immunity. A large fraction of cellular protein O glycosylation is directed to producing a series of core-type O-glycan structures that begin with the covalent linkage of N-acetylgalactosamine (GalNAc) to serine and threonine residues of proteins in the secretory pathway (10, 35, 38, 58, 61). This initial enzymatic step by a polypeptide GalNAc transferase (ppGalNAcT) is

106 citations


Cited by
More filters
Journal ArticleDOI
08 Sep 2006-Cell
TL;DR: This review discusses the increasingly sophisticated molecular mechanisms being discovered by which mammalian glycosylation governs physiology and contributes to disease.

2,376 citations

Journal ArticleDOI
TL;DR: The roles of glycans are highlighted by the fact that alterations in glycosylation regulate the development and progression of cancer, serving as important biomarkers and providing a set of specific targets for therapeutic intervention.
Abstract: Despite recent progress in understanding the cancer genome, there is still a relative delay in understanding the full aspects of the glycome and glycoproteome of cancer. Glycobiology has been instrumental in relevant discoveries in various biological and medical fields, and has contributed to the deciphering of several human diseases. Glycans are involved in fundamental molecular and cell biology processes occurring in cancer, such as cell signalling and communication, tumour cell dissociation and invasion, cell-matrix interactions, tumour angiogenesis, immune modulation and metastasis formation. The roles of glycans in cancer have been highlighted by the fact that alterations in glycosylation regulate the development and progression of cancer, serving as important biomarkers and providing a set of specific targets for therapeutic intervention. This Review discusses the role of glycans in fundamental mechanisms controlling cancer development and progression, and their applications in oncology.

1,920 citations

Journal ArticleDOI
TL;DR: The postulated functions of the recently discovered CD33-related Siglecs are discussed and the factors that seem to be driving their rapid evolution are considered.
Abstract: Through binding ubiquitous sialic-acid residues on cell surfaces, the Siglec family of lectins promote cell–cell interactions and regulate the functions of numerous immune-cell types. This Review describes the emerging roles of Siglecs in pathogen recognition and endocytosis.

1,648 citations

Journal ArticleDOI
TL;DR: It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences, as they are no different from other major macromolecular building blocks of life, simply more rapidly evolving and complex.
Abstract: Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.

1,588 citations

Journal ArticleDOI
TL;DR: A growing body of evidence supports crucial roles for glycans at various pathophysiological steps of tumour progression, and increased understanding of these roles sets the stage for developing pharmaceutical agents that target these molecules.
Abstract: A growing body of evidence supports crucial roles for glycans at various pathophysiological steps of tumour progression. Glycans regulate tumour proliferation, invasion, haematogenous metastasis and angiogenesis, and increased understanding of these roles sets the stage for developing pharmaceutical agents that target these molecules. Such novel agents might be used alone or in combination with operative and/or chemoradiation strategies for treating cancer.

1,199 citations