scispace - formally typeset
Search or ask a question
Author

Kazue Takahashi

Bio: Kazue Takahashi is an academic researcher from Harvard University. The author has contributed to research in topics: Mannan-binding lectin & Complement system. The author has an hindex of 52, co-authored 110 publications receiving 9251 citations. Previous affiliations of Kazue Takahashi include Boston Children's Hospital & Brigham and Women's Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that the essential function of Sox2 is to stabilize ES cells in a pluripotent state by maintaining the requisite level of Oct3/4 expression.
Abstract: The pluripotency of embryonic stem (ES) cells is thought to be maintained by a few key transcription factors, including Oct3/4 and Sox2. The function of Oct3/4 in ES cells has been extensively characterized, but that of Sox2 has yet to be determined. Sox2 can act synergistically with Oct3/4 in vitro to activate Oct-Sox enhancers, which regulate the expression of pluripotent stem cell-specific genes, including Nanog, Oct3/4 and Sox2 itself. These findings suggest that Sox2 is required by ES cells for its Oct-Sox enhancer activity. Using inducible Sox2-null mouse ES cells, we show that Sox2 is dispensable for the activation of these Oct-Sox enhancers. In contrast, we demonstrate that Sox2 is necessary for regulating multiple transcription factors that affect Oct3/4 expression and that the forced expression of Oct3/4 rescues the pluripotency of Sox2-null ES cells. These results indicate that the essential function of Sox2 is to stabilize ES cells in a pluripotent state by maintaining the requisite level of Oct3/4 expression.

1,262 citations

Journal ArticleDOI
TL;DR: The results provide an objective basis for staging hemangiomas and may be used to evaluate pharmacological agents, such as corticosteroids and interferon alfa-2a, which accelerate regression of hemang iomas.
Abstract: Hemangiomas, localized tumors of blood vessels, appear in approximately 10-12% of Caucasian infants. These lesions are characterized by a rapid proliferation of capillaries for the first year (proliferating phase), followed by slow, inevitable, regression of the tumor over the ensuing 1-5 yr (involuting phase), and continual improvement until 6-12 yr of age (involuted phase). To delineate the clinically observed growth phases of hemangiomas at a cellular level, we undertook an immunohistochemical analysis using nine independent markers. The proliferating phase was defined by high expression of proliferating cell nuclear antigen, type IV collagenase, and vascular endothelial growth factor. Elevated expression of the tissue inhibitor of metalloproteinase, TIMP 1, an inhibitor of new blood vessel formation, was observed exclusively in the involuting phase. High expression of basic fibroblast growth factor (bFGF) and urokinase was present in the proliferating and involuting phases. There was coexpression of bFGF and endothelial phenotypic markers CD31 and von Willebrand factor in the proliferating phase. These results provide an objective basis for staging hemangiomas and may be used to evaluate pharmacological agents, such as corticosteroids and interferon alfa-2a, which accelerate regression of hemangiomas. By contrast, vascular malformations do not express proliferating cell nuclear antigen, vascular endothelial growth factor, bFGF, type IV collagenase, and urokinase. These data demonstrate immunohistochemical differences between proliferating hemangiomas and vascular malformations which reflect the biological distinctions between these vascular lesions.

623 citations

Journal ArticleDOI
TL;DR: In this article, the Drosophila melanogaster scavenger receptor Croquemort was identified as a receptor for Staphylococcus aureus, implicating for the first time the CD36 family as phagocytic receptors for bacteria.
Abstract: Phagocyte recognition and clearance of bacteria play essential roles in the host response to infection. In an on-going forward genetic screen, we identify the Drosophila melanogaster scavenger receptor Croquemort as a receptor for Staphylococcus aureus, implicating for the first time the CD36 family as phagocytic receptors for bacteria. In transfection assays, the mammalian Croquemort paralogue CD36 confers binding and internalization of Gram-positive and, to a lesser extent, Gram-negative bacteria. By mutational analysis, we show that internalization of S. aureus and its component lipoteichoic acid requires the COOH-terminal cytoplasmic portion of CD36, specifically Y463 and C464, which activates Toll-like receptor (TLR) 2/6 signaling. Macrophages lacking CD36 demonstrate reduced internalization of S. aureus and its component lipoteichoic acid, accompanied by a marked defect in tumor necrosis factor-α and IL-12 production. As a result, Cd36−/− mice fail to efficiently clear S. aureus in vivo resulting in profound bacteraemia. Thus, response to S. aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain, which initiates TLR2/6 signaling.

409 citations

Journal ArticleDOI
TL;DR: The attributes of MBL that make it a unique soluble pattern recognition molecule are discussed and its broader role in coordinating innate immune activation is highlighted.
Abstract: Innate immunity is the earliest response to invading microbes and acts to contain infection in the first minutes to hours of challenge. Unlike adaptive immunity that relies upon clonal expansion of cells that emerge days after antigenic challenge, the innate immune response is immediate. Soluble mediators, including complement components and the mannose binding lectin (MBL) make an important contribution to innate immune protection and work along with epithelial barriers, cellular defenses such as phagocytosis, and pattern-recognition receptors that trigger pro-inflammatory signaling cascades. These four aspects of the innate immune system act in concert to protect from pathogen invasion. Our work has focused on understanding the protection provided by this complex defense system and, as discussed in this review, the particular contribution of soluble mediators such as MBL and phagocytic cells. Over the past two decades both human epidemiological data and mouse models have indicated that MBL plays a critical role in innate immune protection against a number of pathogens. As demonstrated by our recent in vitro work, we show that MBL and the innate immune signaling triggered by the canonical pattern-recognition receptors (PRRs), the Toll-like receptors (TLRs), are linked by their spatial localization to the phagosome. These observations demonstrated a novel role for MBL as a TLR co-receptor and establishes a new paradigm for the role of opsonins, which we propose to function not only to increase microbial uptake but also to spatially coordinate, amplify, and synchronize innate immune defenses mechanism. In this review we discuss both the attributes of MBL that make it a unique soluble pattern recognition molecule and also highlight its broader role in coordinating innate immune activation.

386 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Think of the switch to the angiogenic phenotype as a net balance of positive and negative regulators of blood vessel growth, which may dictate whether a primary tumour grows rapidly or slowly and whether metastases grow at all.
Abstract: Recent discoveries of endogenous negative regulators of angiogenesis, thrombospondin, angiostatin and glioma-derived angiogenesis inhibitory factor, all associated with neovascularized tumours, suggest a new paradigm of tumorigenesis. It is now helpful to think of the switch to the angiogenic phenotype as a net balance of positive and negative regulators of blood vessel growth. The extent to which the negative regulators are decreased during this switch may dictate whether a primary tumour grows rapidly or slowly and whether metastases grow at all.

7,916 citations

Journal ArticleDOI
TL;DR: Recent studies have shown that monocyte heterogeneity is conserved in humans and mice, allowing dissection of its functional relevance: the different monocyte subsets seem to reflect developmental stages with distinct physiological roles, such as recruitment to inflammatory lesions or entry to normal tissues.
Abstract: Heterogeneity of the macrophage lineage has long been recognized and, in part, is a result of the specialization of tissue macrophages in particular microenvironments. Circulating monocytes give rise to mature macrophages and are also heterogeneous themselves, although the physiological relevance of this is not completely understood. However, as we discuss here, recent studies have shown that monocyte heterogeneity is conserved in humans and mice, allowing dissection of its functional relevance: the different monocyte subsets seem to reflect developmental stages with distinct physiological roles, such as recruitment to inflammatory lesions or entry to normal tissues. These advances in our understanding have implications for the development of therapeutic strategies that are targeted to modify particular subpopulations of monocytes.

4,861 citations

Journal ArticleDOI
15 May 2003-Nature
TL;DR: Based on the pathogenic mechanisms, specific therapeutic interventions can be designed to suppress synovial inflammation and joint destruction in rheumatoid arthritis.
Abstract: Rheumatoid arthritis is the most common inflammatory arthritis and is a major cause of disability. It existed in early Native American populations several thousand years ago but might not have appeared in Europe until the 17th century. Early theories on the pathogenesis of rheumatoid arthritis focused on autoantibodies and immune complexes. T-cell-mediated antigen-specific responses, T-cell-independent cytokine networks, and aggressive tumour-like behaviour of rheumatoid synovium have also been implicated. More recently, the contribution of autoantibodies has returned to the forefront. Based on the pathogenic mechanisms, specific therapeutic interventions can be designed to suppress synovial inflammation and joint destruction in rheumatoid arthritis.

3,321 citations

Journal ArticleDOI
TL;DR: An updated view of the function, structure and dynamics of the complement network is described, its interconnection with immunity at large and with other endogenous pathways is highlighted, and its multiple roles in homeostasis and disease are illustrated.
Abstract: Nearly a century after the significance of the human complement system was recognized, we have come to realize that its functions extend far beyond the elimination of microbes. Complement acts as a rapid and efficient immune surveillance system that has distinct effects on healthy and altered host cells and foreign intruders. By eliminating cellular debris and infectious microbes, orchestrating immune responses and sending 'danger' signals, complement contributes substantially to homeostasis, but it can also take action against healthy cells if not properly controlled. This review describes our updated view of the function, structure and dynamics of the complement network, highlights its interconnection with immunity at large and with other endogenous pathways, and illustrates its multiple roles in homeostasis and disease.

2,986 citations

Journal ArticleDOI
TL;DR: Recent studies addressing the multifaceted roles of FcRs for IgG (FcγRs) in the immune system are discussed and how this knowledge could be translated into novel therapeutic strategies to treat human autoimmune, infectious or malignant diseases are discussed.
Abstract: In addition to their role in binding antigen, antibodies can regulate immune responses through interacting with Fc receptors (FcRs). In recent years, significant progress has been made in understanding the mechanisms that regulate the activity of IgG antibodies in vivo. In this Review, we discuss recent studies addressing the multifaceted roles of FcRs for IgG (FcgammaRs) in the immune system and how this knowledge could be translated into novel therapeutic strategies to treat human autoimmune, infectious or malignant diseases.

2,390 citations