scispace - formally typeset
Search or ask a question
Author

Kazuhiko Maeda

Bio: Kazuhiko Maeda is an academic researcher from Tokyo Institute of Technology. The author has contributed to research in topics: Water splitting & Photocatalysis. The author has an hindex of 78, co-authored 270 publications receiving 34833 citations. Previous affiliations of Kazuhiko Maeda include Japan Society for the Promotion of Science & University of Tokyo.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor.
Abstract: The production of hydrogen from water using a catalyst and solar energy is an ideal future energy source, independent of fossil reserves. For an economical use of water and solar energy, catalysts that are sufficiently efficient, stable, inexpensive and capable of harvesting light are required. Here, we show that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor. Contrary to other conducting polymer semiconductors, carbon nitride is chemically and thermally stable and does not rely on complicated device manufacturing. The results represent an important first step towards photosynthesis in general where artificial conjugated polymer semiconductors can be used as energy transducers.

9,751 citations

Journal ArticleDOI
16 Mar 2006-Nature
TL;DR: An advance in the catalysis of the overall splitting of water under visible light is described: the new catalyst is a solid solution of gallium and zinc nitrogen oxide, modified with nanoparticles of a mixed oxide of rhodium and chromium, which functions as a promising and efficient photocatalyst in promoting the evolution of hydrogen gas.
Abstract: Enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight.

2,537 citations

Journal ArticleDOI
TL;DR: In this article, the state of the art and future challenges in photocatalytic water splitting with a focus on the recent progress of our own research are discussed. But the focus is on the development of cocatalysts and related physical and materials chemistry.
Abstract: Water splitting to form hydrogen and oxygen using solar energy in the presence of semiconductor photocatalysts has long been studied as a potential means of clean, large-scale fuel production. In general, overall water splitting can be achieved when a photocatalyst is modified with a suitable cocatalyst. It is therefore important to develop both photocatalysts and cocatalysts. In the past five years, there has been significant progress in water splitting photocatalysis, especially in the development of cocatalysts and related physical and materials chemistry. This work describes the state of the art and future challenges in photocatalytic water splitting, with a focus on the recent progress of our own research.

2,203 citations

Journal ArticleDOI
TL;DR: It is shown that the efficiency of hydrogen production by photochemical water reduction can be improved by approximately 1 order of magnitude by introducing the right type of mesoporosity into polymeric C(3)N(4).
Abstract: We investigated semiconductor characteristics for polymeric carbon nitride as a metal-free photocatalyst working with visible light and have shown that the efficiency of hydrogen production by photochemical water reduction can be improved by ∼1 order of magnitude by introducing the right type of mesoporosity into polymeric C3N4. We anticipate a wide rang of potential application of C3N4 as energy transducers for artificial photosynthesis in general, especially with a 3D continuous nanoarchitecture. Moreover, the results of finding photoactivity for carbon nitride nanoparticles can enrich the discussion on prebiotic chemistry of the Earth, as HCN polymer clusters are unequivocal in the solar system.

1,471 citations

Journal ArticleDOI
TL;DR: This is the first example of achieving overall water splitting by a photocatalyst with a band gap in the visible light region, which opens the possibility of new non-oxide-type photocatalysts for energy conversion.
Abstract: Photocatalytic overall water splitting has been studied extensively from the viewpoint of solar energy conversion Despite numerous attempts, none have yielded satisfactory results for the development of photocatalysts, which work under visible light irradiation to efficiently utilize solar energy We report here the first example of visible-light-driven overall water splitting on a novel oxynitride photocatalyst, a solid solution of GaN and ZnO with a band gap of 258-276 eV, modified with RuO2 nanoparticles In contrast to the conventional non-oxide photocatalysts, such as CdS, the solid solution is stable during the overall water splitting reaction This is the first example of achieving overall water splitting by a photocatalyst with a band gap in the visible light region, which opens the possibility of new non-oxide-type photocatalysts for energy conversion

1,280 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is shown that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor.
Abstract: The production of hydrogen from water using a catalyst and solar energy is an ideal future energy source, independent of fossil reserves. For an economical use of water and solar energy, catalysts that are sufficiently efficient, stable, inexpensive and capable of harvesting light are required. Here, we show that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor. Contrary to other conducting polymer semiconductors, carbon nitride is chemically and thermally stable and does not rely on complicated device manufacturing. The results represent an important first step towards photosynthesis in general where artificial conjugated polymer semiconductors can be used as energy transducers.

9,751 citations

Journal ArticleDOI
TL;DR: This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent.
Abstract: This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent Many oxides consisting of metal cations with d0 and d10 configurations, metal (oxy)sulfide and metal (oxy)nitride photocatalysts have been reported, especially during the latest decade The fruitful photocatalyst library gives important information on factors affecting photocatalytic performances and design of new materials Photocatalytic water splitting and H2 evolution using abundant compounds as electron donors are expected to contribute to construction of a clean and simple system for solar hydrogen production, and a solution of global energy and environmental issues in the future (361 references)

8,850 citations

Journal ArticleDOI
TL;DR: The biggest challenge is whether or not the goals need to be met to fully utilize solar energy for the global energy demand can be met in a costeffective way on the terawatt scale.
Abstract: Energy harvested directly from sunlight offers a desirable approach toward fulfilling, with minimal environmental impact, the need for clean energy. Solar energy is a decentralized and inexhaustible natural resource, with the magnitude of the available solar power striking the earth’s surface at any one instant equal to 130 million 500 MW power plants.1 However, several important goals need to be met to fully utilize solar energy for the global energy demand. First, the means for solar energy conversion, storage, and distribution should be environmentally benign, i.e. protecting ecosystems instead of steadily weakening them. The next important goal is to provide a stable, constant energy flux. Due to the daily and seasonal variability in renewable energy sources such as sunlight, energy harvested from the sun needs to be efficiently converted into chemical fuel that can be stored, transported, and used upon demand. The biggest challenge is whether or not these goals can be met in a costeffective way on the terawatt scale.2

8,037 citations

Journal ArticleDOI
TL;DR: Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting and its Applications d0 Metal Oxide Photocatalysts 6518 4.4.1.
Abstract: 2.3. Evaluation of Photocatalytic Water Splitting 6507 2.3.1. Photocatalytic Activity 6507 2.3.2. Photocatalytic Stability 6507 3. UV-Active Photocatalysts for Water Splitting 6507 3.1. d0 Metal Oxide Photocatalyts 6507 3.1.1. Ti-, Zr-Based Oxides 6507 3.1.2. Nb-, Ta-Based Oxides 6514 3.1.3. W-, Mo-Based Oxides 6517 3.1.4. Other d0 Metal Oxides 6518 3.2. d10 Metal Oxide Photocatalyts 6518 3.3. f0 Metal Oxide Photocatalysts 6518 3.4. Nonoxide Photocatalysts 6518 4. Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting 6519

6,332 citations