scispace - formally typeset
Search or ask a question
Author

Kazuhiko Yokota

Bio: Kazuhiko Yokota is an academic researcher from Aoyama Gakuin University. The author has contributed to research in topics: Reynolds number & Vortex. The author has an hindex of 16, co-authored 97 publications receiving 871 citations. Previous affiliations of Kazuhiko Yokota include Nagoya Institute of Technology & Osaka University.


Papers
More filters
Journal ArticleDOI
TL;DR: The Ru3(CO)12-catalyed cross-coupling reaction of esters with organoboron compounds leading to ketones is described, and controlled experiments indicate that aldehydes are not intermediate for the transformation.
Abstract: The Ru3(CO)12-catalyed cross-coupling reaction of esters with organoboron compounds leading to ketones is described. A wide variety of functional groups can be tolerated under the reaction conditions. Aromatic boronates function as a coupling partner to give aryl ketones. Acyl-alkyl coupling to dialkyl ketones is also achieved by the use of 9-alkyl-9-BBN in place of boronates. The Ru3(CO)12-catalyzed decarbonylative reduction of esters with ammonium formate (HCOONH4) leading to hydrocarbons is also described. No expected aldehydes are produced, and controlled experiments indicate that aldehydes are not intermediate for the transformation. A hydrosilane can also be used as a reducing reagent in place of HCOONH4. A wide variety of functional groups are compatible for both reactions. The key step for both catalytic reactions is the directing group-promoted cleavage of an acyl carbon-oxygen bond in esters, leading to the generation of acyl transition metal alkoxo complexes.

94 citations

Journal ArticleDOI
TL;DR: In this article, the drag reduction ability of the seal fur surface was tested in a rectangular channel flow using water and a glycerol-water mixture to measure the pressure drop along the channel in order to evaluate friction factors in a wide range of Reynolds number conditions, and the effect of surface roughness was confirmed quantitatively.
Abstract: The drag-reducing ability of the seal fur surface was tested in a rectangular channel flow using water and a glycerol-water mixture to measure the pressure drop along the channel in order to evaluate friction factors in a wide range of Reynolds number conditions, and the drag reduction effect was confirmed quantitatively. The maximum reduction ratio was evaluated to be 12% for the glycerol-water mixture. The effective range of the Reynolds number, where the drag reduction was remarkable, was wider for the seal fur surface compared to that of a riblet surface measured in this channel and in previous studies. It was also found that for the seal fur surface, unlike riblets, any drag increase due to the effect of surface roughness was not found up to the highest Reynolds number tested. Measurements of the seal fur surface using a 3D laser microscope revealed that there were riblet-like grooves, composed of arranged fibers, of which spacings were comparable to that of effective riblets and were distributed in ...

77 citations

Journal ArticleDOI
TL;DR: In this article, the effect of a spanwise traveling-wave motion on a zero-pressure-gradient turbulent boundary layer over a flexible sheet was investigated at low Reynolds numbers using a single hot-wire anemometer for turbulence statistics and two laser displacement sensors for displacements of the flexible sheet.
Abstract: The effect of a spanwise traveling-wave motion on a zero-pressure-gradient turbulent boundary layer over a flexible sheet was investigated at low Reynolds numbers using a single hot-wire anemometer for turbulence statistics and two laser displacement sensors for displacements of the flexible sheet. It was found that the log-law region of the mean velocity on the flexible sheet was slightly narrower compared with a rigid wall. The energy spectra of streamwise velocity fluctuations on the flexible sheet undergoing the spanwise traveling-wave motion were smaller in a region of frequency which corresponded to the bursting frequency in the canonical wall turbulence. This indicates that the bursting event near the flexible sheet was directly affected by the surface wave motion. It was revealed that a drag reduction of up to 7.5% could be obtained by the spanwise traveling-wave motion, estimating the friction coefficients through the growth rate of the momentum thickness.

67 citations

Journal ArticleDOI
TL;DR: In this article, an analytical method is proposed for the prediction of fluttering of a flexible thin sheet or web swept by fluid flow, which assumes self-excited aeroelastic oscillation of the sheet with infinitesimally small amplitude.
Abstract: An analytical method is proposed for the prediction of fluttering of a flexible thin sheet or web swept by fluid flow. It assumes self-excited aeroelastic oscillation of the sheet with infinitesimally small amplitude. The flow and the sheet motion are expressed by distributed vortices over the sheet and the wake, and by bending motions of a number of short segments constituting the sheet. The obtained system of equations determines the flutter limits, the oscillation modes and frequencies. The method treats particularly well the situation of very low mass ratios where the modes are far from those in vacuum and progressive waves are predominant.

62 citations

Journal ArticleDOI
TL;DR: In this paper, the flutter behavior of paper swept by wind is studied for a wide range of mass ratios by an analytical method developed by the authors, and the analytical results explain well the tendencies found in the experimental data.
Abstract: Flutter phenomena of flexible thin sheets such as paper swept by wind are studied for a wide range of mass ratios by an analytical method developed by the authors. The analytical results explain well the tendencies found in the experimental data. Furthermore, the flutter behaviors for very low mass ratios are predicted to tend to deviate far from those for ordinarily stiff materials, which are attributed to the effects of both the fluid friction and the added mass effect by surrounding fluid in addition to the ordinary governing effects for higher mass ratios, i.e., elasticity, inertia force, and fluid pressure.

62 citations


Cited by
More filters
01 Jan 1994
TL;DR: Numerical experiments indicate no oscillation and robustness of the scheme for shock/expansion waves, and for a single contact discontinuity, this scheme gives the numerical flux of the exact solution of the Riemann problem.
Abstract: A flux splitting scheme is proposed for the general nonequilibrium flow equations with an aim at removing numerical dissipation of Van-Leer-type flux-vector splittings on a contact discontinuity. The scheme obtained is also recognized as an improved Advection Upwind Splitting Method (AUSM) where a slight numerical overshoot immediately behind the shock is eliminated. The proposed scheme has favorable properties: high-resolution for contact discontinuities; conservation of enthalpy for steady flows; numerical efficiency; applicability to chemically reacting flows. In fact, for a single contact discontinuity, even if it is moving, this scheme gives the numerical flux of the exact solution of the Riemann problem. Various numerical experiments including that of a thermo-chemical nonequilibrium flow were performed, which indicate no oscillation and robustness of the scheme for shock/expansion waves. A cure for carbuncle phenomenon is discussed as well.

508 citations

Journal ArticleDOI
TL;DR: Critical selection criteria are included for pumps and valves to aid in determining the pumping mechanism that is most appropriate for a given application and important limitations or incompatibilities are addressed.
Abstract: Micropumping has emerged as a critical research area for many electronics and biological applications. A significant driving force underlying this research has been the integration of pumping mechanisms in micro total analysis systems and other multi-functional analysis techniques. Uses in electronics packaging and micromixing and microdosing systems have also capitalized on novel pumping concepts. The present work builds upon a number of existing reviews of micropumping strategies by focusing on the large body of micropump advances reported in the very recent literature. Critical selection criteria are included for pumps and valves to aid in determining the pumping mechanism that is most appropriate for a given application. Important limitations or incompatibilities are also addressed. Quantitative comparisons are provided in graphical and tabular forms.

467 citations

Journal ArticleDOI
TL;DR: A new technique for the ex situ generation of carbon monoxide (CO) and its efficient incorporation in palladium catalyzed carbonylation reactions was achieved using a simple sealed two-chamber system, eliminating the need for specialized equipment such as CO-detectors and equipment for running high pressure reactions.
Abstract: A new technique for the ex situ generation of carbon monoxide (CO) and its efficient incorporation in palladium catalyzed carbonylation reactions was achieved using a simple sealed two-chamber system. The ex situ generation of CO was derived by a palladium catalyzed decarbonylation of tertiary acid chlorides using a catalyst originating from Pd(dba)2 and P(tBu)3. Preliminary studies using pivaloyl chloride as the CO-precursor provided an alternative approach for the aminocarbonylation of 2-pyridyl tosylate derivatives using only 1.5 equiv of CO. Further design of the acid chloride CO-precursor led to the development of a new solid, stable, and easy to handle source of CO for chemical transformations. The synthesis of this CO-precursor also provided an entry point for the late installment of an isotopically carbon-labeled acid chloride for the subsequent release of gaseous [13C]CO. In combination with studies aimed toward application of CO as the limiting reagent, this method provided highly efficient pall...

341 citations

Journal ArticleDOI
TL;DR: In this review, recent advances in metal-catalyzed cross-coupling reactions of aromatic esters and amides are discussed.
Abstract: Catalytic cross-coupling reactions of aromatic esters and amides have recently gained considerable attention from synthetic chemists as de novo and efficient synthetic methods to form C–C and C–heteroatom bonds. Esters and amides can be used as diversifiable groups in metal-catalyzed cross-coupling: in a decarbonylative manner, they can be utilized as leaving groups, whereas in a non-decarbonylative manner, they can form ketone derivatives. In this review, recent advances of this research topic are discussed.

335 citations