scispace - formally typeset
Search or ask a question
Author

Kazuhiro Kobayashi

Other affiliations: University of Tokyo, Nagoya University, Osaka University  ...read more
Bio: Kazuhiro Kobayashi is an academic researcher from Kobe University. The author has contributed to research in topics: Fukutin & Congenital muscular dystrophy. The author has an hindex of 34, co-authored 118 publications receiving 7001 citations. Previous affiliations of Kazuhiro Kobayashi include University of Tokyo & Nagoya University.


Papers
More filters
Journal ArticleDOI
Peter Szatmari1, Andrew D. Paterson2, Lonnie Zwaigenbaum1, Wendy Roberts2, Jessica Brian2, Xiao-Qing Liu2, John B. Vincent2, Jennifer Skaug2, Ann P. Thompson1, Lili Senman2, Lars Feuk2, Cheng Qian2, Susan E. Bryson3, Marshall B. Jones4, Christian R. Marshall2, Stephen W. Scherer2, Veronica J. Vieland5, Christopher W. Bartlett5, La Vonne Mangin5, Rhinda Goedken6, Alberto M. Segre6, Margaret A. Pericak-Vance7, Michael L. Cuccaro7, John R. Gilbert7, Harry H. Wright8, Ruth K. Abramson8, Catalina Betancur9, Thomas Bourgeron10, Christopher Gillberg11, Marion Leboyer9, Joseph D. Buxbaum12, Kenneth L. Davis12, Eric Hollander12, Jeremy M. Silverman12, Joachim Hallmayer13, Linda Lotspeich13, James S. Sutcliffe14, Jonathan L. Haines14, Susan E. Folstein15, Joseph Piven16, Thomas H. Wassink6, Val C. Sheffield6, Daniel H. Geschwind17, Maja Bucan18, W. Ted Brown, Rita M. Cantor17, John N. Constantino19, T. Conrad Gilliam20, Martha R. Herbert21, Clara Lajonchere17, David H. Ledbetter22, Christa Lese-Martin22, Janet Miller17, Stan F. Nelson17, Carol A. Samango-Sprouse23, Sarah J. Spence17, Matthew W. State24, Rudolph E. Tanzi21, Hilary Coon25, Geraldine Dawson26, Bernie Devlin27, Annette Estes26, Pamela Flodman28, Lambertus Klei27, William M. McMahon25, Nancy J. Minshew27, Jeff Munson26, Elena Korvatska26, Elena Korvatska29, Patricia M. Rodier30, Gerard D. Schellenberg29, Gerard D. Schellenberg26, Moyra Smith28, M. Anne Spence28, Christopher J. Stodgell30, Ping Guo Tepper, Ellen M. Wijsman26, Chang En Yu26, Chang En Yu29, Bernadette Rogé31, Carine Mantoulan31, Kerstin Wittemeyer31, Annemarie Poustka32, Bärbel Felder32, Sabine M. Klauck32, Claudia Schuster32, Fritz Poustka33, Sven Bölte33, Sabine Feineis-Matthews33, Evelyn Herbrecht33, Gabi Schmötzer33, John Tsiantis34, Katerina Papanikolaou34, Elena Maestrini35, Elena Bacchelli35, Francesca Blasi35, Simona Carone35, Claudio Toma35, Herman van Engeland36, Maretha de Jonge36, Chantal Kemner36, Frederike Koop36, Marjolijn Langemeijer36, Channa Hijimans36, Wouter G. Staal36, Gillian Baird37, Patrick Bolton38, Michael Rutter38, Emma Weisblatt39, Jonathan Green40, Catherine Aldred40, Julie Anne Wilkinson40, Andrew Pickles40, Ann Le Couteur41, Tom Berney41, Helen McConachie41, Anthony J. Bailey42, Kostas Francis42, Gemma Honeyman42, Aislinn Hutchinson42, Jeremy R. Parr42, Simon Wallace42, Anthony P. Monaco42, Gabrielle Barnby42, Kazuhiro Kobayashi42, Janine A. Lamb42, Inês Sousa42, Nuala Sykes42, Edwin H. Cook43, Stephen J. Guter43, Bennett L. Leventhal43, Jeff Salt43, Catherine Lord44, Christina Corsello44, Vanessa Hus44, Daniel E. Weeks27, Fred R. Volkmar24, Maïté Tauber45, Eric Fombonne46, Andy Shih47 
TL;DR: Linkage and copy number variation analyses implicate chromosome 11p12–p13 and neurexins, respectively, among other candidate loci, highlighting glutamate-related genes as promising candidates for contributing to ASDs.
Abstract: Autism spectrum disorders (ASDs) are common, heritable neurodevelopmental conditions. The genetic architecture of ASDs is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASDs by using Affymetrix 10K SNP arrays and 1,181 [corrected] families with at least two affected individuals, performing the largest linkage scan to date while also analyzing copy number variation in these families. Linkage and copy number variation analyses implicate chromosome 11p12-p13 and neurexins, respectively, among other candidate loci. Neurexins team with previously implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for contributing to ASDs.

1,338 citations

Journal ArticleDOI
23 Jul 1998-Nature
TL;DR: There is a retrotransposal insertion of tandemly repeated sequences within this candidate-gene interval in all FCMD chromosomes carrying the founder haplotype (87%).
Abstract: Fukuyama-type congenital muscular dystrophy (FCMD), one of the most common autosomal recessive disorders in Japan (incidence is 0.7-1.2 per 10,000 births), is characterized by congenital muscular dystrophy associated with brain malformation (micropolygria) due to a defect in the migration of neurons. We previously mapped the FCMD gene to a region of less than 100 kilobases which included the marker locus D9S2107 on chromosome 9q31. We have also described a haplotype that is shared by more than 80% of FCMD chromosomes, indicating that most chromosomes bearing the FCMD mutation could be derived from a single ancestor. Here we report that there is a retrotransposal insertion of tandemly repeated sequences within this candidate-gene interval in all FCMD chromosomes carrying the founder haplotype (87%). The inserted sequence is about 3 kilobases long and is located in the 3' untranslated region of a gene encoding a new 461-amino-acid protein. This gene is expressed in various tissues in normal individuals, but not in FCMD patients who carry the insertion. Two independent point mutations confirm that mutation of this gene is responsible for FCMD. The predicted protein, which we term fukutin, contains an amino-terminal signal sequence, which together with results from transfection experiments suggests that fukutin is a secreted protein. To our knowledge, FCMD is the first human disease to be caused by an ancient retrotransposal integration.

772 citations

Journal ArticleDOI
TL;DR: It is suggested that interference in O-mannosyl glycosylation is a new pathomechanism for muscular dystrophy as well as neuronal migration disorder.

685 citations

Journal ArticleDOI
TL;DR: Differential manifestation of ER stress and DHA responsiveness may help explain variable clinical results obtained with the use of DHA treatment and suggests that DHA may in fact be effective for a subset of patients.

666 citations

Journal ArticleDOI
TL;DR: The SCA31 repeat insertion's length inversely correlated with patient age of onset, and an expansion was documented in a single family showing anticipation, suggesting that the ectopic microsatellite repeat, when transcribed, might cause a disease involving the essential splicing factors.
Abstract: Spinocerebellar ataxia type 31 (SCA31) is an adult-onset autosomal-dominant neurodegenerative disorder showing progressive cerebellar ataxia mainly affecting Purkinje cells. The SCA31 critical region was tracked down to a 900 kb interval in chromosome 16q22.1, where the disease shows a strong founder effect. By performing comprehensive Southern blot analysis and BAC- and fosmid-based sequencing, we isolated two genetic changes segregating with SCA31. One was a single-nucleotide change in an intron of the thymidine kinase 2 gene (TK2). However, this did not appear to affect splicing or expression patterns. The other was an insertion, from 2.5–3.8 kb long, consisting of complex penta-nucleotide repeats including a long (TGGAA)n stretch. In controls, shorter (1.5–2.0 kb) insertions lacking (TGGAA)n were found only rarely. The SCA31 repeat insertion's length inversely correlated with patient age of onset, and an expansion was documented in a single family showing anticipation. The repeat insertion was located in introns of TK2 and BEAN (brain expressed, associated with Nedd4) expressed in the brain and formed RNA foci in the nuclei of patients' Purkinje cells. An electrophoretic mobility-shift assay showed that essential splicing factors, serine/arginine-rich splicing factors SFRS1 and SFRS9, bind to (UGGAA)n in vitro. Because (TGGAA)n is a characteristic sequence of paracentromeric heterochromatin, we speculate that the insertion might have originated from heterochromatin. SCA31 is important because it exemplifies human diseases associated with “inserted” microsatellite repeats that can expand through transmission. Our finding suggests that the ectopic microsatellite repeat, when transcribed, might cause a disease involving the essential splicing factors.

255 citations


Cited by
More filters
Journal ArticleDOI
J. Craig Venter1, Mark Raymond Adams1, Eugene W. Myers1, Peter W. Li1  +269 moreInstitutions (12)
16 Feb 2001-Science
TL;DR: Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems are indicated.
Abstract: A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.

12,098 citations

Journal ArticleDOI
TL;DR: Advances in this direction are essential for identifying new disease genes, for uncovering the biological significance of disease-associated mutations identified by genome-wide association studies and full-genome sequencing, and for identifying drug targets and biomarkers for complex diseases.
Abstract: Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular and intercellular network that links tissue and organ systems. The emerging tools of network medicine offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships among apparently distinct (patho)phenotypes. Advances in this direction are essential for identifying new disease genes, for uncovering the biological significance of disease-associated mutations identified by genome-wide association studies and full-genome sequencing, and for identifying drug targets and biomarkers for complex diseases.

3,978 citations

Journal ArticleDOI
TL;DR: Copper sites have historically been divided into three classes based on their spectroscopic features, which reflect the geometric and electronic structure of the active site: type 1 or blue copper, type 2 (T2) or normal copper, and type 3 (T3) or coupled binuclear copper centers.
Abstract: Copper is an essential trace element in living systems, present in the parts per million concentration range. It is a key cofactor in a diverse array of biological oxidation-reduction reactions. These involve either outer-sphere electron transfer, as in the blue copper proteins and the Cu{sub A} site of cytochrome oxidase and nitrous oxide redutase, or inner-sphere electron transfer in the binding, activation, and reduction of dioxygen, superoxide, nitrite, and nitrous oxide. Copper sites have historically been divided into three classes based on their spectroscopic features, which reflect the geometric and electronic structure of the active site: type 1 (T1) or blue copper, type 2 (T2) or normal copper, and type 3 (T3) or coupled binuclear copper centers. 428 refs.

3,241 citations

Journal ArticleDOI
20 May 2009-JAMA
TL;DR: In this article, a systematic literature search was conducted for observational cohort studies using MEDLINE (1966 to December 31, 2008) and EMBASE (1980 to December 30, 2008), which reported associations of baseline cardiorespiratory fitness with CHD events, CVD events, or all-cause mortality in healthy participants.
Abstract: Context Epidemiological studies have indicated an inverse association between cardiorespiratory fitness (CRF) and coronary heart disease (CHD) or all-cause mortality in healthy participants. Objective To define quantitative relationships between CRF and CHD events, cardiovascular disease (CVD) events, or all-cause mortality in healthy men and women. Data Sources and Study Selection A systematic literature search was conducted for observational cohort studies using MEDLINE (1966 to December 31, 2008) and EMBASE (1980 to December 31, 2008). The Medical Subject Headings search terms used included exercise tolerance, exercise test, exercise/physiology, physical fitness, oxygen consumption, cardiovascular diseases, myocardial ischemia, mortality, mortalities, death, fatality, fatal, incidence, or morbidity. Studies reporting associations of baseline CRF with CHD events, CVD events, or all-cause mortality in healthy participants were included. Data Extraction Two authors independently extracted relevant data. CRF was estimated as maximal aerobic capacity (MAC) expressed in metabolic equivalent (MET) units. Participants were categorized as low CRF ( Data Synthesis Data were obtained from 33 eligible studies (all-cause mortality, 102 980 participants and 6910 cases; CHD/CVD, 84 323 participants and 4485 cases). Pooled RRs of all-cause mortality and CHD/CVD events per 1-MET higher level of MAC (corresponding to 1-km/h higher running/jogging speed) were 0.87 (95% confidence interval [CI], 0.84-0.90) and 0.85 (95% CI, 0.82-0.88), respectively. Compared with participants with high CRF, those with low CRF had an RR for all-cause mortality of 1.70 (95% CI, 1.51-1.92; P Conclusions Better CRF was associated with lower risk of all-cause mortality and CHD/CVD. Participants with a MAC of 7.9 METs or more had substantially lower rates of all-cause mortality and CHD/CVD events compared with those with a MAC of less 7.9 METs.

2,464 citations