scispace - formally typeset
Search or ask a question
Author

Kazuki Nakajima

Bio: Kazuki Nakajima is an academic researcher from Fujita Health University. The author has contributed to research in topics: Glycan & Glycosylation. The author has an hindex of 21, co-authored 47 publications receiving 958 citations. Previous affiliations of Kazuki Nakajima include National Institute of Advanced Industrial Science and Technology & RIKEN Brain Science Institute.

Papers
More filters
Journal ArticleDOI
TL;DR: A conventional HPLC method for simultaneous determination of nucleotide sugars was applied to characterize nucleotide sugar levels in breast and pancreatic cancer cell lines and revealed that the abundance of UDP-GlcNAc, UDP-GalNAc , UDP-glcUA and GDP-Fuc were a cell-type-specific feature.
Abstract: Nucleotide sugars are important in determining cell surface glycoprotein glycosylation, which can modulate cellular properties such as growth and arrest. We have developed a conventional HPLC method for simultaneous determination of nucleotide sugars. A mixture of nucleotide sugars (CMP-NeuAc, UDP-Gal, UDP-Glc, UDP-GalNAc, UDP-GlcNAc, GDP-Man, GDP-Fuc and UDP-GlcUA) and relevant nucleotides were perfectly separated in an optimized ion-pair reversed-phase mode using Inertsil ODS-4 and ODS-3 columns. The newly developed method enabled us to determine the nucleotide sugars in cellular extracts from 1 x 10(6) cells in a single run. We applied this method to characterize nucleotide sugar levels in breast and pancreatic cancer cell lines and revealed that the abundance of UDP-GlcNAc, UDP-GalNAc, UDP-GlcUA and GDP-Fuc were a cell-type-specific feature. To determine the physiological significance of changes in nucleotide sugar levels, we analyzed their changes by glucose deprivation and found that the determination of nucleotide sugar levels provided us with valuable information with respect to studying the overview of cellular glycosylation status.

120 citations

Journal ArticleDOI
TL;DR: The findings suggest that the functional loss of GCase or β-Gal promotes the toxic conversion of αSyn via aberrant interactions between αSyn and their substrate glycolipids, leading to the aggravation of α synuclein-mediated neurodegeneration.
Abstract: Alpha-synuclein (αSyn) plays a central role in the pathogenesis of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Recent multicenter genetic studies have revealed that mutations in the glucocerebrosidase 1 (GBA1) gene, which are responsible for Gaucher's disease, are strong risk factors for PD and DLB. However, the mechanistic link between the functional loss of glucocerebrosidase (GCase) and the toxicity of αSyn in vivo is not fully understood. In this study, we employed Drosophila models to examine the effect of GCase deficiency on the neurotoxicity of αSyn and its molecular mechanism. Behavioral and histological analyses showed that knockdown of the Drosophila homolog of GBA1 (dGBA1) exacerbates the locomotor dysfunction, loss of dopaminergic neurons and retinal degeneration of αSyn-expressing flies. This phenotypic aggravation was associated with the accumulation of proteinase K (PK)-resistant αSyn, rather than with changes in the total amount of αSyn, raising the possibility that glucosylceramide (GlcCer), a substrate of GCase, accelerates the misfolding of αSyn. Indeed, in vitro experiments revealed that GlcCer directly promotes the conversion of recombinant αSyn into the PK-resistant form, representing a toxic conformational change. Similar to dGBA1 knockdown, knockdown of the Drosophila homolog of β-galactosidase (β-Gal) also aggravated locomotor dysfunction of the αSyn flies, and its substrate GM1 ganglioside accelerated the formation of PK-resistant αSyn. Our findings suggest that the functional loss of GCase or β-Gal promotes the toxic conversion of αSyn via aberrant interactions between αSyn and their substrate glycolipids, leading to the aggravation of αSyn-mediated neurodegeneration.

76 citations

Journal ArticleDOI
TL;DR: Current thinking of how hypoxia alters glucose metabolic fluxes that can modulate cellular glycosylation patterns and consequently modify cellular functions is discussed, particularly from the standpoint of the N-acetylglucosamine cycle, a part of the ”Glycan cycle”.
Abstract: Glucose is an energy substrate, as well as the primary source of nucleotide sugars, which are utilized as donor substrates in protein glycosylation. Appropriate glycosylation is necessary to maintain the stability of protein, and is also important in the localization and trafficking of proteins. The dysregulation of glycosylation results in the development of a variety of disorders, such as cancer, diabetes mellitus and emphysema. Glycosylation is kinetically regulated by dynamically changing the portfolio of glycosyltransferases, nucleotide sugars, and nucleotide sugar transporters, which together form a part of what is currently referred to as the “Glycan cycle”. An excess or a deficiency in the expression of glycosyltransferases has been shown to alter the glycosylation pattern, which subsequently leads to the onset, progression and exacerbation of a number of diseases. Furthermore, alterations in intracellular nucleotide sugar levels can also modulate glycosylation patterns. It is observed that pathological hypoxic microenvironments frequently occur in solid cancers and inflammatory foci. Hypoxic conditions dramatically change gene expression profiles, by activating hypoxia-inducible factor-1, which mediates adaptive cellular responses. Hypoxia-induced glycosyltransferases and nucleotide sugar transporters have been shown to modulate glycosylation patterns that are part of the mechanism associated with cancer metastasis. Hypoxia-inducible factor-1 also induces the expression of glucose transporters and various types of glycolytic enzymes, leading to shifts in glucose metabolic patterns. This fact strongly suggests that hypoxic conditions are an important factor in modulating various nucleotide sugar biosynthetic pathways. This review discusses some of the current thinking of how hypoxia alters glucose metabolic fluxes that can modulate cellular glycosylation patterns and consequently modify cellular functions, particularly from the standpoint of the N-acetylglucosamine cycle, a part of the “Glycan cycle”.

68 citations

Journal ArticleDOI
TL;DR: The results suggest that the elevated O-GlcNAcylation level in colonic tissues contributes to the development of colitis and CAC by disrupting regulation of NF-κB-dependent transcriptional activity.
Abstract: // Yong Ryoul Yang 1 , Dae Hyun Kim 1 , Young-Kyo Seo 1 , Dohyun Park 2 , Hyun-Jun Jang 1,2 , Soo Youn Choi 1 , Yong Hwa Lee 1 , Gyun Hui Lee 1 , Kazuki Nakajima 3 , Naoyuki Taniguchi 3 , Jung-Min Kim 1 , Eun-Jeong Choi 2 , Hyo Youl Moon 1 , Il Shin Kim 1 , Jang Hyun Choi 1 , Ho Lee 4 , Sung Ho Ryu 2 , Lucio Cocco 5 and Pann-Ghill Suh 1 1 School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea 2 Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea 3 Disease Glycomics Team, Systems Glycobiology Research Group, RIKENMax Planck Joint Research Center, Global Research Cluster, RIKEN, Hirosawa, Wako, Saitama, Japan 4 Cancer Experimental Resources Branch, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea 5 Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy Correspondence to: Pann-Ghill Suh, email: // Keywords : O-GlcNAcylation, O-GlcNAcase, colitis, colitis-associated cancer Received : May 06, 2014 Accepted : March 11, 2015 Published : March 30, 2015 Abstract O-GlcNAcylation is a reversible post-translational modification. O-GlcNAc addition and removal is catalyzed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. More recent evidence indicates that regulation of O-GlcNAcylation is important for inflammatory diseases and tumorigenesis. In this study, we revealed that O-GlcNAcylation was increased in the colonic tissues of dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced colitis-associated cancer (CAC) animal models. Moreover, the O-GlcNAcylation level was elevated in human CAC tissues compared with matched normal counterparts. To investigate the functional role of O-GlcNAcylation in colitis, we used OGA heterozygote mice, which have an increased level of O-GlcNAcylation. OGA +/- mice have higher susceptibility to DSS-induced colitis than OGA +/+ mice. OGA +/- mice exhibited a higher incidence of colon tumors than OGA +/+ mice. In molecular studies, elevated O-GlcNAc levels were shown to enhance the activation of NF-κB signaling through increasing the binding of RelA/p65 to its target promoters. We also found that Thr-322 and Thr352 in the p65-O-GlcNAcylation sites are critical for p65 promoter binding. These results suggest that the elevated O-GlcNAcylation level in colonic tissues contributes to the development of colitis and CAC by disrupting regulation of NF-κB-dependent transcriptional activity.

64 citations

Journal ArticleDOI
TL;DR: Capillary affinity electrophoresis studies indicated that RSL binds strongly to N-glycans with α(1–6)-linked fucose residues, which could make RSL a valuable tool for glycobiological studies.

56 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An accumulating body of evidence suggests that HMOs are antiadhesive antimicrobials that serve as soluble decoy receptors, prevent pathogen attachment to infant mucosal surfaces and lower the risk for viral, bacterial and protozoan parasite infections.
Abstract: Human milk oligosaccharides (HMOs) are a family of structurally diverse unconjugated glycans that are highly abundant in and unique to human milk. Originally, HMOs were discovered as a prebiotic "bifidus factor" that serves as a metabolic substrate for desired bacteria and shapes an intestinal microbiota composition with health benefits for the breast-fed neonate. Today, HMOs are known to be more than just "food for bugs". An accumulating body of evidence suggests that HMOs are antiadhesive antimicrobials that serve as soluble decoy receptors, prevent pathogen attachment to infant mucosal surfaces and lower the risk for viral, bacterial and protozoan parasite infections. In addition, HMOs may modulate epithelial and immune cell responses, reduce excessive mucosal leukocyte infiltration and activation, lower the risk for necrotizing enterocolitis and provide the infant with sialic acid as a potentially essential nutrient for brain development and cognition. Most data, however, stem from in vitro, ex vivo or animal studies and occasionally from association studies in mother-infant cohorts. Powered, randomized and controlled intervention studies will be needed to confirm relevance for human neonates. The first part of this review introduces the pioneers in HMO research, outlines HMO structural diversity and describes what is known about HMO biosynthesis in the mother's mammary gland and their metabolism in the breast-fed infant. The second part highlights the postulated beneficial effects of HMO for the breast-fed neonate, compares HMOs with oligosaccharides in the milk of other mammals and in infant formula and summarizes the current roadblocks and future opportunities for HMO research.

1,253 citations

Journal ArticleDOI
TL;DR: The infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions are described and the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and disease are discussed.
Abstract: The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially) driven and modulated by specific compounds present in human milk. It has been shown that certain genomes of infant gut commensals, in particular those of bifidobacterial species, are genetically adapted to utilize specific glycans of this human secretory fluid, thus representing a very intriguing example of host-microbe coevolution, where both partners are believed to benefit. In recent years, various metagenomic studies have tried to dissect the composition and functionality of the infant gut microbiome and to explore the distribution across the different ecological niches of the infant gut biogeography of the corresponding microbial consortia, including those corresponding to bacteria and viruses, in healthy and ill subjects. Such analyses have linked certain features of the microbiota/microbiome, such as reduced diversity or aberrant composition, to intestinal illnesses in infants or disease states that are manifested at later stages of life, including asthma, inflammatory bowel disease, and metabolic disorders. Thus, a growing number of studies have reported on how the early human gut microbiota composition/development may affect risk factors related to adult health conditions. This concept has fueled the development of strategies to shape the infant microbiota composition based on various functional food products. In this review, we describe the infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions. Finally, we discuss the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and disease.

970 citations

Journal ArticleDOI
TL;DR: In this overview, 13 papers that should be on everyone's ‘must read’ list for 2003 are spotlighted and examples of how to identify and interpret high‐quality biosensor data are provided.
Abstract: In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.

518 citations

01 Jan 1995
TL;DR: This review focuses on the various biochemical aspects of the interactions between the selectins and their cognate carbohydrate ligands, with an emphasis on the importance of these adhesive events to the inflammatory response.
Abstract: The orderly migration of various white blood cell types to inflammatory sites is a highly regulated process that involves a diversity of adhesion and signaling molecules. This cellular influx is initiated by relatively low affinity interactions that allow for leukocytes to roll along the vascular surfa ce. This rolling phe­ nomenon is mediated by adhesive interactions between lectin containing ad­ hesion molecules, termed selectins, on both the vascular endothelium and leukocytes, and car bohydrate ligands immobilized on mucin-like scaffolds. This adhesion allows for a rapid recognition of various cell types under the conditions of vascular flow, with the result that inflammatory cells are spe­

482 citations

Journal ArticleDOI
TL;DR: Clinical and genetic information of 5 Japanese patients with Bardet-Biedl syndrome is summarized and it is found that rare liver fibrosis was detected in two patients, while only two patients had renal dysfunction, thought to be a universal symptom.

456 citations