scispace - formally typeset
Search or ask a question
Author

Kazuo Hotate

Bio: Kazuo Hotate is an academic researcher from Toyota Technological Institute. The author has contributed to research in topics: Optical fiber & Brillouin scattering. The author has an hindex of 48, co-authored 441 publications receiving 8804 citations. Previous affiliations of Kazuo Hotate include University of Tokyo & Mitsubishi Heavy Industries.


Papers
More filters
BookDOI
01 Jan 1988
TL;DR: Optical Fiber-Chemical Sensing using Direct Spectroscopy Chemical Sensing Using Indicator Dyes Dynamic Light Scattering Applied and Its Application in Concentrated Suspensions In Vivo Medical Sensors Fiber-Optic Gyros Fiber Optic Sensors for Condition Monitoring and Engineering Diagnostics Sensors in Industrial Systems Distributed Sensors as discussed by the authors.
Abstract: Optical Fiber-Chemical Sensing Using Direct Spectroscopy Chemical Sensing Using Indicator Dyes Dynamic Light Scattering Applied and Its Application in Concentrated Suspensions In Vivo Medical Sensors Fiber-Optic Gyros Fiber-Optic Sensors for Condition Monitoring and Engineering Diagnostics Sensors in Industrial Systems Distributed Sensors -- Recent Developments Multiplexing Techniques for Fiber-Optic Sensors Fiber Optics and Smart Structures Fiber-Optic Sensors -- Commercial Presence

364 citations

Journal ArticleDOI
TL;DR: A Brillouin optical correlation-domain reflectometry (BOCDR), which can measure the distribution of strain and/or temperature along an optical fiber from a single end, by detecting spontaneous BrillouIn scattering with controlling the interference of continuous lightwaves is proposed.
Abstract: We propose a Brillouin optical correlation-domain reflectometry (BOCDR), which can measure the distribution of strain and/or temperature along an optical fiber from a single end, by detecting spontaneous Brillouin scattering with controlling the interference of continuous lightwaves. In a pulse-based conventional Brillouin optical time-domain reflectometry (BOTDR), it is difficult in principle to achieve a spatial resolution less than 1 m, and the measurement time is as long as 5-10 minutes. On the contrary, the continuous-wave-based BOCDR can exceed the limit of 1-m resolution, and realize much faster measurement and random access to measuring positions. Spatial resolution of 40 cm was experimentally demonstrated with sampling rate of 50 Hz.

280 citations

Journal ArticleDOI
TL;DR: A novel method that realizes simultaneous and completely discriminative measurement of strain and temperature using one piece of Panda-type polarization-maintaining fibre is presented and it is found that the Brillouin frequency shift and the birefringence have the same signs for strain-dependence but opposite signs for temperature-Dependence.
Abstract: This paper presents a novel method that realizes simultaneous and completely discriminative measurement of strain and temperature using one piece of Panda-type polarization-maintaining fibre. Two independent optical parameters in the fiber, the Brillouin frequency shift and the birefringence, are measured by evaluating the spectrum of stimulated Brillouin scattering (SBS) and that of the dynamic acoustic grating generated in SBS to get two independent responses to strain and temperature. We found that the Brillouin frequency shift and the birefringence have the same signs for strain-dependence but opposite signs for temperature-dependence. In experiment, the birefringence in the PMF is characterized with a precision of approximately 10(-8) by detecting the diffraction spectrum of the dynamic acoustic grating. A reproducible accuracy of discriminating strain and temperature as fine as 3 micro-strains and 0.08 degrees Celsius is demonstrated.

274 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported simultaneous oscillation of 17 0.8 nm spliced wavelengths from a Fabry-Perot (FP) erbium doped fiber laser.
Abstract: The authors report simultaneous oscillation of 17 0.8 nm spliced wavelengths from a Fabry-Perot (FP) erbium doped fibre laser. Multiwavelength operation is made possible by inserting an intracavity etalon and cooling the erbium doped fibre at 77 K by liquid nitrogen. It is promising as the multiwavelength light source for wavelength division multiplexing (WDM) networks. Heterodyne measurement shows that two or three longitudinal modes exist in each wavelength.

269 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: OCT as discussed by the authors synthesises cross-sectional images from a series of laterally adjacent depth-scans, which can be used to assess tissue and cell function and morphology in situ.
Abstract: There have been three basic approaches to optical tomography since the early 1980s: diffraction tomography, diffuse optical tomography and optical coherence tomography (OCT). Optical techniques are of particular importance in the medical field, because these techniques promise to be safe and cheap and, in addition, offer a therapeutic potential. Advances in OCT technology have made it possible to apply OCT in a wide variety of applications but medical applications are still dominating. Specific advantages of OCT are its high depth and transversal resolution, the fact, that its depth resolution is decoupled from transverse resolution, high probing depth in scattering media, contact-free and non-invasive operation, and the possibility to create various function dependent image contrasting methods. This report presents the principles of OCT and the state of important OCT applications. OCT synthesises cross-sectional images from a series of laterally adjacent depth-scans. At present OCT is used in three different fields of optical imaging, in macroscopic imaging of structures which can be seen by the naked eye or using weak magnifications, in microscopic imaging using magnifications up to the classical limit of microscopic resolution and in endoscopic imaging, using low and medium magnification. First, OCT techniques, like the reflectometry technique and the dual beam technique were based on time-domain low coherence interferometry depth-scans. Later, Fourier-domain techniques have been developed and led to new imaging schemes. Recently developed parallel OCT schemes eliminate the need for lateral scanning and, therefore, dramatically increase the imaging rate. These schemes use CCD cameras and CMOS detector arrays as photodetectors. Video-rate three-dimensional OCT pictures have been obtained. Modifying interference microscopy techniques has led to high-resolution optical coherence microscopy that achieved sub-micrometre resolution. This report is concluded with a short presentation of important OCT applications. Ophthalmology is, due to the transparent ocular structures, still the main field of OCT application. The first commercial instrument too has been introduced for ophthalmic diagnostics (Carl Zeiss Meditec AG). Advances in using near-infrared light, however, opened the path for OCT imaging in strongly scattering tissues. Today, optical in vivo biopsy is one of the most challenging fields of OCT application. High resolution, high penetration depth, and its potential for functional imaging attribute to OCT an optical biopsy quality, which can be used to assess tissue and cell function and morphology in situ. OCT can already clarify the relevant architectural tissue morphology. For many diseases, however, including cancer in its early stages, higher resolution is necessary. New broad-bandwidth light sources, like photonic crystal fibres and superfluorescent fibre sources, and new contrasting techniques, give access to new sample properties and unmatched sensitivity and resolution.

1,914 citations

Journal ArticleDOI
TL;DR: In this paper, the temperature dependence of the fluorescence intensity ratio has been studied using thermally coupled energy levels in seven different rare earth ions doped into a variety of glasses and crystals.
Abstract: The fluorescence intensity ratio technique for optical fiber-based point temperature sensing is reviewed, including the materials suitable for this technique. The temperature dependence of the fluorescence intensity ratio has been studied using thermally coupled energy levels in seven different rare earth ions doped into a variety of glasses and crystals. Sensor prototypes developed using Pr3+:ZBLANP, Nd3+-doped silica fiber and Yb3+-doped silica fiber as the sensing material have been used to measure temperatures covering the range of approximately −50 to 600 °C with a resolution of the order of 1 °C.

1,033 citations

Journal ArticleDOI
26 Jun 2012-Sensors
TL;DR: A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.
Abstract: Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.

1,011 citations

Journal ArticleDOI
TL;DR: This work presents an overview of progress and developments in the field of fiber optic sensor technology, highlighting the major issues underpinning recent research and illustrating a number of important applications and key areas of effective Fiber optic sensor development.
Abstract: This work presents an overview of progress and developments in the field of fiber optic sensor technology, highlighting the major issues underpinning recent research and illustrating a number of important applications and key areas of effective fiber optic sensor development.

823 citations