scispace - formally typeset
Search or ask a question
Author

Ke Chen

Bio: Ke Chen is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Particle & Atomic packing factor. The author has an hindex of 21, co-authored 70 publications receiving 1423 citations. Previous affiliations of Ke Chen include University of Science and Technology of China & Center for Excellence in Education.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the interplay between CDW and superconductivity in a topological kagome metal has been studied using measurements of resistivity, dc and ac magnetic susceptibility under various pressures up to 6 GPa.
Abstract: ${\mathrm{CsV}}_{3}{\mathrm{Sb}}_{5}$ is a newly discovered ${Z}_{2}$ topological kagome metal showing the coexistence of a charge-density-wave (CDW)-like order at ${T}^{*}=94\text{ }\text{ }\mathrm{K}$ and superconductivity (SC) at ${T}_{c}=2.5\text{ }\text{ }\mathrm{K}$ at ambient pressure. Here, we study the interplay between CDW and SC in ${\mathrm{CsV}}_{3}{\mathrm{Sb}}_{5}$ via measurements of resistivity, dc and ac magnetic susceptibility under various pressures up to 6.6 GPa. We find that the CDW transition decreases with pressure and experience a subtle modification at ${P}_{c1}\ensuremath{\approx}0.6--0.9\text{ }\text{ }\mathrm{GPa}$ before it vanishes completely at ${P}_{c2}\ensuremath{\approx}2\text{ }\text{ }\mathrm{GPa}$. Correspondingly, ${T}_{c}(P)$ displays an unusual $M$-shaped double dome with two maxima around ${P}_{c1}$ and ${P}_{c2}$, respectively, leading to a tripled enhancement of ${T}_{c}$ to about 8 K at 2 GPa. The obtained temperature-pressure phase diagram resembles those of unconventional superconductors, illustrating an intimated competition between CDW-like order and SC. The competition is found to be particularly strong for the intermediate pressure range ${P}_{c1}\ensuremath{\le}P\ensuremath{\le}{P}_{c2}$ as evidenced by the broad superconducting transition and reduced superconducting volume fraction. The modification of CDW order around ${P}_{c1}$ has been discussed based on the band structure calculations. This work not only demonstrates the potential to raise ${T}_{c}$ of the V-based kagome superconductors, but also offers more insights into the rich physics related to the electron correlations in this novel family of topological kagome metals.

209 citations

Journal ArticleDOI
TL;DR: A snapshot of a broad range of physics phenomenology which benefits from the unique properties of responsive microgel particles is provided.
Abstract: This review collects and describes experiments that employ colloidal suspensions to probe physics in ordered and disordered solids and related complex fluids. The unifying feature of this body of work is its clever usage of poly(N-isopropylacrylamide) (PNIPAM) microgel particles. These temperature-sensitive colloidal particles provide experimenters with a 'knob' for in situ control of particle size, particle interaction and particle packing fraction that, in turn, influence the structural and dynamical behavior of the complex fluids and solids. A brief summary of PNIPAM particle synthesis and properties is given, followed by a synopsis of current activity in the field. The latter discussion describes a variety of soft matter investigations including those that explore formation and melting of crystals and clusters, and those that probe structure, rearrangement and rheology of disordered (jammed/glassy) and partially ordered matter. The review, therefore, provides a snapshot of a broad range of physics phenomenology which benefits from the unique properties of responsive microgel particles.

159 citations

Journal ArticleDOI
TL;DR: Poly(N-isopropylacrylamide) microgel particles are synthesized using a semi-batch surfactant-free emulsion polymerization method and monodisperse particles with uniform cross-linker density, homogeneous optical properties, and pronounced thermoresponsivity are readily produced with a wide variety of diameters.

106 citations

Journal ArticleDOI
I. C. Khoo, J. Ding1, Yuyan Zhang1, Ke Chen1, A. Diaz1 
TL;DR: In this article, an extremely large electro-optically induced photorefractive effect in a nematic liquid crystal doped with single-walled carbon nanotubes and fullerene C60 was observed.
Abstract: We have observed an extremely large electro-optically induced photorefractive effect in nematic liquid crystal doped with single-walled carbon nanotubes and fullerene C60. The effective refractive index change coefficient can be as large as 7 cm2/W, which is >1000 times larger than previous observations. We describe the basic mechanisms and conditions necessary for occurrence of such nonlinearities.

95 citations

Journal ArticleDOI
TL;DR: The simple synthetic strategy, good stability, highly catalytic activity, and easy magnetic separation property of M/C-PDA/Ag hybrid make it serve as a promising environmentally friendly catalyst for the elimination of Cr(VI).

93 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of mostly recent activities can be found, with a brief summary of the historical perspective of the multiferroic magnetoelectric composites since its appearance in 1972.
Abstract: Multiferroic magnetoelectric materials, which simultaneously exhibit ferroelectricity and ferromagnetism, have recently stimulated a sharply increasing number of research activities for their scientific interest and significant technological promise in the novel multifunctional devices. Natural multiferroic single-phase compounds are rare, and their magnetoelectric responses are either relatively weak or occurs at temperatures too low for practical applications. In contrast, multiferroic composites, which incorporate both ferroelectric and ferri-/ferromagnetic phases, typically yield giant magnetoelectric coupling response above room temperature, which makes them ready for technological applications. This review of mostly recent activities begins with a brief summary of the historical perspective of the multiferroic magnetoelectric composites since its appearance in 1972. In such composites the magnetoelectric effect is generated as a product property of a magnetostrictive and a piezoelectric substance. A...

3,288 citations

Journal ArticleDOI
TL;DR: In this paper, a review describes the recent progress made in creating nanostructured metamaterials with a negative index at optical wavelengths, and discusses some of the devices that could result from these new materials.
Abstract: Artificially engineered metamaterials are now demonstrating unprecedented electromagnetic properties that cannot be obtained with naturally occurring materials. In particular, they provide a route to creating materials that possess a negative refractive index and offer exciting new prospects for manipulating light. This review describes the recent progress made in creating nanostructured metamaterials with a negative index at optical wavelengths, and discusses some of the devices that could result from these new materials.

2,654 citations

Journal ArticleDOI
TL;DR: This Article exploits near-field microscopy to image propagating plasmons in high-quality graphene encapsulated between two films of hexagonal boron nitride (h-BN), and finds unprecedentedly low plasmon damping combined with strong field confinement and confirms the high uniformity of this plAsmonic medium.
Abstract: Graphene plasmons were predicted to possess ultra-strong field confinement and very low damping at the same time, enabling new classes of devices for deep subwavelength metamaterials, single-photon nonlinearities, extraordinarily strong light-matter interactions and nano-optoelectronic switches. While all of these great prospects require low damping, thus far strong plasmon damping was observed, with both impurity scattering and many-body effects in graphene proposed as possible explanations. With the advent of van der Waals heterostructures, new methods have been developed to integrate graphene with other atomically flat materials. In this letter we exploit near-field microscopy to image propagating plasmons in high quality graphene encapsulated between two films of hexagonal boron nitride (h-BN). We determine dispersion and particularly plasmon damping in real space. We find unprecedented low plasmon damping combined with strong field confinement, and identify the main damping channels as intrinsic thermal phonons in the graphene and dielectric losses in the h-BN. The observation and in-depth understanding of low plasmon damping is the key for the development of graphene nano-photonic and nano-optoelectronic devices.

679 citations

Journal ArticleDOI
Anton Autere1, Henri Jussila1, Yunyun Dai1, Yadong Wang1, Harri Lipsanen1, Zhipei Sun1 
TL;DR: The current state of the art in the field of nonlinear optics based on 2DLMs and their hybrid structures (e.g., mixed-dimensional heterostructures, plasmonic structures, and silicon/fiber integrated structures) is reviewed and several potential perspectives and possible future research directions of these promising nanomaterials for non linear optics are presented.
Abstract: 2D layered materials (2DLMs) are a subject of intense research for a wide variety of applications (e.g., electronics, photonics, and optoelectronics) due to their unique physical properties. Most recently, increasing research efforts on 2DLMs are projected toward the nonlinear optical properties of 2DLMs, which are not only fascinating from the fundamental science point of view but also intriguing for various potential applications. Here, the current state of the art in the field of nonlinear optics based on 2DLMs and their hybrid structures (e.g., mixed-dimensional heterostructures, plasmonic structures, and silicon/fiber integrated structures) is reviewed. Several potential perspectives and possible future research directions of these promising nanomaterials for nonlinear optics are also presented.

494 citations

Journal ArticleDOI
TL;DR: The next generation of composites, including Hybrid Organic−Inorganic Composites and Glasses, will be dominated by Organic Amorphous Glasses and Polymer Composites, while Polymethine-Dispersed Liquid Crystals will be used for Crystal-Containing Materials.
Abstract: 5.3.2. Traps and Grating Dark Decay 3288 5.3.3. Other Concerns 3288 6. New Photorefractive Materials 3289 6.1. Polymer Composites 3289 6.2. Organic Amorphous Glasses 3292 6.3. Fully Functionalized Polymers 3294 6.4. Polymer-Dispersed Liquid Crystals 3295 6.5. Other Liquid Crystal-Containing Materials 3296 6.6. Near-Infrared-Sensitive Materials 3297 6.7. Other Materials Directions 3298 6.7.1. Hybrid Organic−Inorganic Composites and Glasses 3298

417 citations