scispace - formally typeset
Search or ask a question
Author

Ke Fan

Bio: Ke Fan is an academic researcher from Dalian University of Technology. The author has contributed to research in topics: Dye-sensitized solar cell & Water splitting. The author has an hindex of 37, co-authored 75 publications receiving 4296 citations. Previous affiliations of Ke Fan include Wuhan University & King Abdulaziz University.


Papers
More filters
Journal ArticleDOI
TL;DR: Mechanistic studies indicate that the nickel–vanadium-layered double hydroxides can provide high intrinsic catalytic activity, mainly due to enhanced conductivity, facile electron transfer and abundant active sites, and may expand the scope of cost-effective electrocatalysts for water splitting.
Abstract: Highly active and low-cost electrocatalysts for water oxidation are required due to the demands on sustainable solar fuels; however, developing highly efficient catalysts to meet industrial require ...

784 citations

Journal ArticleDOI
TL;DR: Light driven water splitting was achieved by a tandem dye-sensitized photoelectrochemical cell with two photoactive electrodes that can split water by visible light under neutral pH conditions without applying any bias.
Abstract: Light driven water splitting was achieved by a tandem dye-sensitized photoelectrochemical cell with two photoactive electrodes. The photoanode is constituted by an organic dye L0 as photosensitizer and a molecular complex Ru1 as water oxidation catalyst on meso-porous TiO2, while the photocathode is constructed with an organic dye P1 as photoabsorber and a molecular complex Co1 as hydrogen generation catalyst on nanostructured NiO. By combining the photocathode and the photoanode, this tandem DS-PEC cell can split water by visible light under neutral pH conditions without applying any bias.

314 citations

Journal ArticleDOI
03 Dec 2018-ACS Nano
TL;DR: In situ and in-depth observation of structural evolution in the OER measurement can provide insights into the fundamental understanding of the mechanism for the O ER catalysts, thus enabling the more rational design of low-cost and high-efficient electrocatalysts for water splitting.
Abstract: As one of the most remarkable oxygen evolution reaction (OER) electrocatalysts, metal chalcogenides have been intensively reported during the past few decades because of their high OER activities. It has been reported that electron-chemical conversion of metal chalcogenides into oxides/hydroxides would take place after the OER. However, the transition mechanism of such unstable structures, as well as the real active sites and catalytic activity during the OER for these electrocatalysts, has not been understood yet; therefore a direct observation for the electrocatalytic water oxidation process, especially at nano or even angstrom scale, is urgently needed. In this research, by employing advanced Cs-corrected transmission electron microscopy (TEM), a step by step oxidational evolution of amorphous electrocatalyst CoS x into crystallized CoOOH in the OER has been in situ captured: irreversible conversion of CoS x to crystallized CoOOH is initiated on the surface of the electrocatalysts with a morphology change via Co(OH)2 intermediate during the OER measurement, where CoOOH is confirmed as the real active species. Besides, this transition process has also been confirmed by multiple applications of X-ray photoelectron spectroscopy (XPS), in situ Fourier-transform infrared spectroscopy (FTIR), and other ex situ technologies. Moreover, on the basis of this discovery, a high-efficiency electrocatalyst of a nitrogen-doped graphene foam (NGF) coated by CoS x has been explored through a thorough structure transformation of CoOOH. We believe this in situ and in-depth observation of structural evolution in the OER measurement can provide insights into the fundamental understanding of the mechanism for the OER catalysts, thus enabling the more rational design of low-cost and high-efficient electrocatalysts for water splitting.

307 citations

Journal ArticleDOI
TL;DR: In this paper, a bimetal (Ni and Mo) sulfide-based hybrid nanowire (NiS2/MoS2 HNW) was proposed for the hydrogen evolution reaction (HER).
Abstract: Electrochemical water splitting to produce hydrogen bears a great commitment for future renewable energy conversion and storage. By employing an in situ chemical vapor deposition (CVD) process, we prepared a bimetal (Ni and Mo) sulfide-based hybrid nanowire (NiS2/MoS2 HNW), which was composed of NiS2 nanoparticles and MoS2 nanoplates, and revealed that it is an efficient electrocatalyst for the hydrogen evolution reaction (HER) over a wide pH range due to the collective effects of rational morphological design and synergistic heterointerfaces. On a simple glassy carbon (GC) electrode, NiS2/MoS2 HNW displays overpotentials at −10 mA cm–2 catalytic current density (η10) of 204, 235, and 284 mV with small Tafel slopes of 65, 58, and 83 mV dec–1 in alkaline, acidic, and neutral electrolyte, respectively, exhibiting pH-universal-efficient electrocatalytic HER performance, which is comparable to the recently reported state-of-the-art sulfide-based HER electrocatalysts. Theoretical calculations further confirm t...

265 citations

Journal ArticleDOI
TL;DR: This work underscores the tuned structure and electrocatalytic OER performance of MOF derivatives by the versatility of MXenes and provides insight into the structure-activity relationship for noble metal-free catalysts.
Abstract: Water oxidation is the key process for many sustainable energy technologies containing artificial photosynthesis and metal–air batteries. Engineering inexpensive yet active electrocatalysts for water oxidation is mandatory for the cost-effective generation of solar fuels. Herein, we propose a novel hierarchical porous Ni–Co-mixed metal sulfide (denoted as NiCoS) on Ti3C2Tx MXene via a metal–organic framework (MOF)-based approach. Benefiting from the unique structure and strong interfacial interaction between NiCoS and Ti3C2Tx sheets, the hybrid guarantees an enhanced active surface area with prominent charge-transfer conductivity and thus a superior activity toward oxygen evolution reactions (OERs). Impressively, the hierarchical NiCoS in the hybrid is converted to nickel/cobalt oxyhydroxide–NiCoS assembly (denoted as NiCoOOH–NiCoS) by OER measurement, where NiCoOOH on the surface is confirmed as the intrinsic active species for the consequent water oxidation. The hybrid material is further applied to an ...

260 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,707 citations

Journal ArticleDOI
TL;DR: The fundamental relationships between electronic structure, adsorption energy, and apparent activity for a wide variety of 2D electrocatalysts are described with the goal of providing a better understanding of these emerging nanomaterials at the atomic level.
Abstract: Over the past few decades, the design and development of advanced electrocatalysts for efficient energy conversion technologies have been subjects of extensive study. With the discovery of graphene, two-dimensional (2D) nanomaterials have emerged as some of the most promising candidates for heterogeneous electrocatalysts due to their unique physical, chemical, and electronic properties. Here, we review 2D-nanomaterial-based electrocatalysts for selected electrocatalytic processes. We first discuss the unique advances in 2D electrocatalysts based on different compositions and functions followed by specific design principles. Following this overview, we discuss various 2D electrocatalysts for electrocatalytic processes involved in the water cycle, carbon cycle, and nitrogen cycle from their fundamental conception to their functional application. We place a significant emphasis on different engineering strategies for 2D nanomaterials and the influence these strategies have on intrinsic material performance, ...

1,363 citations

Journal ArticleDOI
01 Jan 2018
TL;DR: In this paper, a general approach to a series of monodispersed atomic transition metals (for example, Fe, Co, Ni) embedded in nitrogen-doped graphene with a common MN4C4 moiety, identified by systematic X-ray absorption fine structure analyses and direct transmission electron microscopy imaging, was reported.
Abstract: Single-atom catalysts (SACs) have recently attracted broad research interest as they combine the merits of both homogeneous and heterogeneous catalysts. Rational design and synthesis of SACs are of immense significance but have so far been plagued by the lack of a definitive correlation between structure and catalytic properties. Here, we report a general approach to a series of monodispersed atomic transition metals (for example, Fe, Co, Ni) embedded in nitrogen-doped graphene with a common MN4C4 moiety, identified by systematic X-ray absorption fine structure analyses and direct transmission electron microscopy imaging. The unambiguous structure determination allows density functional theoretical prediction of MN4C4 moieties as efficient oxygen evolution catalysts with activities following the trend Ni > Co > Fe, which is confirmed by electrochemical measurements. Determination of atomistic structure and its correlation with catalytic properties represents a critical step towards the rational design and synthesis of precious or nonprecious SACs with exceptional atom utilization efficiency and catalytic activities.

1,305 citations

Journal ArticleDOI
TL;DR: This article summarized the recent progress in understanding OER mechanisms, which include the conventional adsorbate evolution mechanism (AEM) and lattice-oxygen-mediated mechanism (LOM) from both theoretical and experimental aspects, and introduced strategies to reduce overpotential.
Abstract: Electricity-driven water splitting can facilitate the storage of electrical energy in the form of hydrogen gas. As a half-reaction of electricity-driven water splitting, the oxygen evolution reaction (OER) is the major bottleneck due to the sluggish kinetics of this four-electron transfer reaction. Developing low-cost and robust OER catalysts is critical to solving this efficiency problem in water splitting. The catalyst design has to be built based on the fundamental understanding of the OER mechanism and the origin of the reaction overpotential. In this article, we summarize the recent progress in understanding OER mechanisms, which include the conventional adsorbate evolution mechanism (AEM) and lattice-oxygen-mediated mechanism (LOM) from both theoretical and experimental aspects. We start with the discussion on the AEM and its linked scaling relations among various reaction intermediates. The strategies to reduce overpotential based on the AEM and its derived descriptors are then introduced. To further reduce the OER overpotential, it is necessary to break the scaling relation of HOO* and HO* intermediates in conventional AEM to go beyond the activity limitation of the volcano relationship. Strategies such as stabilization of HOO*, proton acceptor functionality, and switching the OER pathway to LOM are discussed. The remaining questions on the OER and related perspectives are also presented at the end.

1,107 citations

Journal ArticleDOI
TL;DR: In this article, a review concisely compiles the recent progress in the fabrication, modification, and major applications of the direct Z-scheme photocatalysts; the latter include water splitting, carbon dioxide reduction, degradation of pollutants, and biohazard disinfection.

1,013 citations