scispace - formally typeset
Search or ask a question
Author

Ke-Qing Xia

Bio: Ke-Qing Xia is an academic researcher from Southern University of Science and Technology. The author has contributed to research in topics: Turbulence & Rayleigh number. The author has an hindex of 47, co-authored 143 publications receiving 6099 citations. Previous affiliations of Ke-Qing Xia include University of Hong Kong & The Chinese University of Hong Kong.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the properties of the structure functions and other small-scale quantities in turbulent Rayleigh-Benard convection are reviewed from an experimental, theoretical, and numerical point of view.
Abstract: The properties of the structure functions and other small-scale quantities in turbulent Rayleigh-Benard convection are reviewed, from an experimental, theoretical, and numerical point of view. In particular, we address the question of whether, and if so where in the flow, the so-called Bolgiano-Obukhov scaling exists, i.e., Sθ(r) ∼ r2/5 for the second-order temperature structure function and Su(r) ∼ r6/5 for the second-order velocity structure function. Apart from the anisotropy and inhomogeneity of the flow, insufficiently high Rayleigh numbers, and intermittency corrections (which all hinder the identification of such a potential regime), there are also reasons, as a matter of principle, why such a scaling regime may be limited to at most a decade, namely the lack of clear scale separation between the Bolgiano length scale LB and the height of the cell.

750 citations

Journal ArticleDOI
TL;DR: In this article, the authors used shadowgraph and particle image velocimetry techniques to visualize the motion of thermal plumes and measure the velocity of the plume and of the background flow field, as the fluid motion evolves from quiescent to steady state.
Abstract: We report an experimental study on the onset of the large-scale coherent mean flow in Rayleigh–Benard turbulent convection. Shadowgraph and particle image velocimetry techniques are used to visualize the motion of thermal plumes and measure the velocity of the plumes and of the ‘background’ flow field, as the fluid motion evolves from quiescent to steady state. The experiment reveals the dynamical origin of the initial horizontal motion required by the large-scale flow: the fluid entrainment caused by the plume's vertical motion generates vortices surrounding the plume itself. These vortices in turn generate the initial horizontal motion of the flow field. Two types of interactions have been identified: (i) direct plume–vortex interaction; and (ii) plume–plume interaction via vortices. These interactions and the interaction and merging of the vortices from neighbouring plumes lead to groupings and/or merging of plumes, which in turn generate vortices of even larger scale. As a result of these interactions, the convective flow evolves into a coherent rotatory motion consisting of mainly the plumes themselves and spanning the whole convection box. This study clearly demonstrates that it is the thermal plumes that initiate the horizontal large-scale flow across the top and bottom conducting plates.

197 citations

Journal ArticleDOI
TL;DR: This work analyzes the reversals of the large-scale flow in Rayleigh-Bénard convection both through particle image velocimetry flow visualization and direct numerical simulations of the underlying Boussinesq equations in a (quasi-) two-dimensional, rectangular geometry of aspect ratio 1.
Abstract: We analyze the reversals of the large-scale flow in Rayleigh-Benard convection both through particle image velocimetry flow visualization and direct numerical simulations of the underlying Boussinesq equations in a (quasi-) two-dimensional, rectangular geometry of aspect ratio 1. For medium Prandtl number there is a diagonal large-scale convection roll and two smaller secondary rolls in the two remaining corners diagonally opposing each other. These corner-flow rolls play a crucial role for the large-scale wind reversal: They grow in kinetic energy and thus also in size thanks to plume detachments from the boundary layers up to the time that they take over the main, large-scale diagonal flow, thus leading to reversal. The Rayleigh vs Prandtl number space is mapped out. The occurrence of reversals sensitively depends on these parameters

182 citations

Journal ArticleDOI
TL;DR: The study provides a direct confirmation that a rotatory mean wind indeed persists for the highest value of Ra reached in the experiment and reveals that the mean flow in the central region of the convection cell is of the shape of a coherent elliptical rotating core.
Abstract: The spatial structure of the velocity field in turbulent Rayleigh-Benard convection in water has been measured using the particle image velocimetry technique, with the Rayleigh number Ra varying from 9 x 10(8) to 9 x 10(11) and the Prandtl number remaining approximately constant (Pr approximately 4). The study provides a direct confirmation that a rotatory mean wind indeed persists for the highest value of Ra reached in the experiment. The measurement reveals that the mean flow in the central region of the convection cell is of the shape of a coherent elliptical rotating core for Ra below 1 x 10(10). Above this Ra, the orientation of the elliptical core changes by a 90 degrees angle and an inner core rotating at a lower rate inside the original bulk core emerges. It is further found that the rotation frequencies of the inner core and the outer shell have distinct scalings with Ra; the scaling exponent for the outer-shell is 0.5 and it is 0.4 for the inner core. From the measured rms and skewness distributions of the velocity field, we find that velocity fluctuations at the cell center are neither homogeneous nor isotropic. The turbulent energy production fields further reveal that the mean wind is not driven by turbulent fluctuations associated with Reynolds stress.

153 citations

Journal ArticleDOI
TL;DR: In this article, the system of turbulent thermal convection is introduced and progress in recent decades in the four major areas of research in turbulent convection are briefly reviewed, which also serve to point out that the future directions in this important field of fluid mechanics lie in the extension to the nonstandard or non-classical Rayleigh-Benard configuration.

146 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production.
Abstract: Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics such as work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. For a basic Markovian dynamics implemented either on the continuum level with Langevin equations or on a discrete set of states as a master equation, thermodynamic consistency imposes a local-detailed balance constraint on noise and rates, respectively. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation–dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production. (Some figures may appear in colour only in the online journal) This article was invited by Erwin Frey.

2,834 citations

Journal ArticleDOI
TL;DR: In this article, the time dependence of ρ11, ρ22 and ρ12 under steady-state conditions was analyzed under a light field interaction V = -μ12Ee iωt + c.c.
Abstract: (b) Write out the equations for the time dependence of ρ11, ρ22, ρ12 and ρ21 assuming that a light field interaction V = -μ12Ee iωt + c.c. couples only levels |1> and |2>, and that the excited levels exhibit spontaneous decay. (8 marks) (c) Under steady-state conditions, find the ratio of populations in states |2> and |3>. (3 marks) (d) Find the slowly varying amplitude ̃ ρ 12 of the polarization ρ12 = ̃ ρ 12e iωt . (6 marks) (e) In the limiting case that no decay is possible from intermediate level |3>, what is the ground state population ρ11(∞)? (2 marks) 2. (15 marks total) In a 2-level atom system subjected to a strong field, dressed states are created in the form |D1(n)> = sin θ |1,n> + cos θ |2,n-1> |D2(n)> = cos θ |1,n> sin θ |2,n-1>

1,872 citations

Journal ArticleDOI
TL;DR: In this article, the Nusselt number and the Reynolds number depend on the Rayleigh number Ra and the Prandtl number Pr, and the thicknesses of the thermal and the kinetic boundary layers scale with Ra and Pr.
Abstract: The progress in our understanding of several aspects of turbulent Rayleigh-Benard convection is reviewed. The focus is on the question of how the Nusselt number and the Reynolds number depend on the Rayleigh number Ra and the Prandtl number Pr, and on how the thicknesses of the thermal and the kinetic boundary layers scale with Ra and Pr. Non-Oberbeck-Boussinesq effects and the dynamics of the large scale convection roll are addressed as well. The review ends with a list of challenges for future research on the turbulent Rayleigh-Benard system.

1,372 citations

Journal ArticleDOI
TL;DR: In this article, a systematic theory for the scaling of the Nusselt number Nu and of the Reynolds number Re in strong Rayleigh-Benard convection is suggested and shown to be compatible with recent experiments.
Abstract: A systematic theory for the scaling of the Nusselt number Nu and of the A systematic theory for the scaling of the Nusselt number Nu and of the Reynolds number Re in strong Rayleigh–Benard convection is suggested and shown to be compatible with recent experiments. It assumes a coherent large-scale convection roll (‘wind of turbulence’) and is based on the dynamical equations both in the bulk and in the boundary layers. Several regimes are identified in the Rayleigh number Ra versus Prandtl number Pr phase space, defined by whether the boundary layer or the bulk dominates the global kinetic and thermal dissipation, respectively, and by whether the thermal or the kinetic boundary layer is thicker. The crossover between the regimes is calculated. In the regime which has most frequently been studied in experiment (Ra [less, similar] 1011) the leading terms are Nu [similar] Ra1/4Pr1/8, Re [similar] Ra1/2Pr[minus sign]3/4 for Pr [less, similar] 1 and Nu [similar] Ra1/4Pr[minus sign]1/12, Re [similar] Ra1/2Pr[minus sign]5/6 for Pr [greater, similar] 1. In most measurements these laws are modified by additive corrections from the neighbouring regimes so that the impression of a slightly larger (effective) Nu vs. Ra scaling exponent can arise. The most important of the neighbouring regimes towards large Ra are a regime with scaling Nu [similar] Ra1/2Pr1/2, Re [similar] Ra1/2Pr[minus sign]1/2 for medium Pr (‘Kraichnan regime’), a regime with scaling Nu [similar] Ra1/5Pr1/5, Re [similar] Ra2/5Pr[minus sign]3/5 for small Pr, a regime with Nu [similar] Ra1/3, Re [similar] Ra4/9Pr[minus sign]2/3 for larger Pr, and a regime with scaling Nu [similar] Ra3/7Pr[minus sign]1/7, Re [similar] Ra4/7Pr[minus sign]6/7 for even larger Pr. In particular, a linear combination of the ¼ and the 1/3 power laws for Nu with Ra, Nu = 0.27Ra1/4 + 0.038Ra1/3 (the prefactors follow from experiment), mimics a 2/7 power-law exponent in a regime as large as ten decades. For very large Ra the laminar shear boundary layer is speculated to break down through the non-normal-nonlinear transition to turbulence and another regime emerges.

933 citations