scispace - formally typeset
Search or ask a question
Author

Ke Wu

Bio: Ke Wu is an academic researcher from École Polytechnique de Montréal. The author has contributed to research in topics: Microstrip & Antenna (radio). The author has an hindex of 87, co-authored 1242 publications receiving 33226 citations. Previous affiliations of Ke Wu include Nanjing University of Science and Technology & Yunnan Normal University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a planar platform is developed in which the microstrip line and rectangular waveguide are fully integrated on the same substrate, and they are interconnected via a simple taper.
Abstract: Usually transitions from microstrip line to rectangular waveguide are made with three-dimensional complex mounting structures. In this paper, a new planar platform is developed in which the microstrip line and rectangular waveguide are fully integrated on the same substrate, and they are interconnected via a simple taper. Our experiments at 28 GHz show that an effective bandwidth of 12% at 20 dB return loss is obtained with an in-band insertion loss better than 0.3 dB. The new transition allows a complete integration of waveguide components on substrate with MICs and MMICs.

1,631 citations

Journal ArticleDOI
17 Jan 2005
TL;DR: In this article, a numerical multimode calibration procedure is proposed and developed with a commercial software package on the basis of a full-wave finite-element method for the accurate extraction of complex propagation constants of the SIW structure.
Abstract: The substrate integrated waveguide (SIW) technique makes it possible that a complete circuit including planar circuitry, transitions, and rectangular waveguides are fabricated in planar form using a standard printed circuit board or other planar processing techniques. In this paper, guided wave and modes characteristics of such an SIW periodic structure are studied in detail for the first time. A numerical multimode calibration procedure is proposed and developed with a commercial software package on the basis of a full-wave finite-element method for the accurate extraction of complex propagation constants of the SIW structure. Two different lengths of the SIW are numerically simulated under multimode excitation. By means of our proposed technique, the complex propagation constant of each SIW mode can accurately be extracted and the electromagnetic bandstop phenomena of periodic structures are also investigated. Experiments are made to validate our proposed technique. Simple design rules are provided and discussed.

1,356 citations

Journal ArticleDOI
TL;DR: In this article, the authors present new concepts that allow for the complete integration of planar circuits and waveguide filters synthesized on a single substrate by means of metallized post (or via-hole) arrays.
Abstract: The integrated planar technique has been considered as a reliable candidate for low-cost mass production of millimeter-wave circuits and systems. This paper presents new concepts that allow for a complete integration of planar circuits and waveguide filters synthesized on a single substrate by means of metallized post (or via-hole) arrays. Analysis of the synthesized integrated waveguide and design criteria are presented for the post pitch and diameter. A filter design method derived from a synthesis technique using inductive post is presented. An experimental three-pole Chebyshev filter having 1-dB insertion loss and return loss better than 17 dB is demonstrated. Integrating such planar and nonplanar circuits on a substrate can significantly reduce size, weight, and cost, and greatly enhance manufacturing repeatability and reliability.

868 citations

Journal ArticleDOI
TL;DR: In this paper, the dispersion properties of the substrate integrated rectangular waveguide (SIRW) were rigorously obtained using the BI-RME method combined with the Floquet's theorem.
Abstract: Dispersion properties of the substrate integrated rectangular waveguide (SIRW) are rigorously obtained using the BI-RME method combined with the Floquet's theorem. Our analysis shows that the SIRW basically has the same guided-wave characteristics as the conventional rectangular waveguide. Empirical equations are derived from the calculated dispersion curves in order to estimate the cutoff frequency of the first two dominant modes of the SIRW To validate the analysis results, an SIRW guide was designed and measured. Very good agreements between the experimental and theoretical results were obtained.

776 citations

Journal ArticleDOI
TL;DR: In this article, a new method of analysis is presented for the determination of complex propagation constants in substrate integrated waveguides (SIWs) by making use of the concept of surface impedance to model the rows of conducting cylinders, and the proposed model is then solved by combining a method of moments and a transverse resonance procedure.
Abstract: A new method of analysis is presented in this paper for the determination of complex propagation constants in substrate integrated waveguides (SIWs) This method makes use of the concept of surface impedance to model the rows of conducting cylinders, and the proposed model is then solved by combining a method of moments and a transverse resonance procedure The proposed method is further applied to extract results in terms of parametric curves and graphs which demonstrate fundamental and interesting wave guidance and leakage properties of this type of periodic waveguide Useful design rules are extracted from this analysis, suggesting that appropriate design parameters and regions should be carefully selected for practical applications In addition, comprehensive review and comparisons with published results are also presented to show the performance and accuracy of the proposed modeling technique Practical measurements of fabricated samples with different levels of loss have confirmed the accuracy of this new method and validity of design rules

765 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Book
01 Jan 2001
TL;DR: In this paper, the authors present a general framework for coupling matrix for Coupled Resonator Filters with short-circuited Stubs (UWB) and Cascaded Quadruplet (CQ) filters.
Abstract: Preface to the Second Edition. Preface to the First Edition. 1 Introduction. 2 Network Analysis. 2.1 Network Variables. 2.2 Scattering Parameters. 2.3 Short-Circuit Admittance Parameters. 2.4 Open-Circuit Impedance Parameters. 2.5 ABCD Parameters. 2.6 Transmission-Line Networks. 2.7 Network Connections. 2.8 Network Parameter Conversions. 2.9 Symmetrical Network Analysis. 2.10 Multiport Networks. 2.11 Equivalent and Dual Network. 2.12 Multimode Networks. 3 Basic Concepts and Theories of Filters. 3.1 Transfer Functions. 3.2 Lowpass Prototype Filters and Elements. 3.3 Frequency and Element Transformations. 3.4 Immittance Inverters. 3.5 Richards' Transformation and Kuroda Identities. 3.6 Dissipation and Unloaded Quality Factor. 4 Transmission Lines and Components. 4.1 Microstrip Lines. 4.2 Coupled Lines. 4.3 Discontinuities and Components. 4.4 Other Types of Microstrip Lines. 4.5 Coplanar Waveguide (CPW). 4.6 Slotlines. 5 Lowpass and Bandpass Filters. 5.1 Lowpass Filters. 5.2 Bandpass Filters. 6 Highpass and Bandstop Filters. 6.1 Highpass Filters. 6.2 Bandstop Filters. 7 Coupled-Resonator Circuits. 7.1 General Coupling Matrix for Coupled-Resonator Filters. 7.2 General Theory of Couplings. 7.3 General Formulation for Extracting Coupling Coefficient k. 7.4 Formulation for Extracting External Quality Factor Qe. 7.5 Numerical Examples. 7.6 General Coupling Matrix Including Source and Load. 8 CAD for Low-Cost and High-Volume Production. 8.1 Computer-Aided Design (CAD) Tools. 8.2 Computer-Aided Analysis (CAA). 8.3 Filter Synthesis by Optimization. 8.4 CAD Examples. 9 Advanced RF/Microwave Filters. 9.1 Selective Filters with a Single Pair of Transmission Zeros. 9.2 Cascaded Quadruplet (CQ) Filters. 9.3 Trisection and Cascaded Trisection (CT) Filters. 9.4 Advanced Filters with Transmission-Line Inserted Inverters. 9.5 Linear-Phase Filters. 9.6 Extracted Pole Filters. 9.7 Canonical Filters. 9.8 Multiband Filters. 10 Compact Filters and Filter Miniaturization. 10.1 Miniature Open-Loop and Hairpin Resonator Filters. 10.2 Slow-Wave Resonator Filters. 10.3 Miniature Dual-Mode Resonator Filters. 10.4 Lumped-Element Filters. 10.5 Miniature Filters Using High Dielectric-Constant Substrates. 10.6 Multilayer Filters. 11 Superconducting Filters. 11.1 High-Temperature Superconducting (HTS) Materials. 11.2 HTS Filters for Mobile Communications. 11.3 HTS Filters for Satellite Communications. 11.4 HTS Filters for Radio Astronomy and Radar. 11.5 High-Power HTS Filters. 11.6 Cryogenic Package. 12 Ultra-Wideband (UWB) Filters. 12.1 UWB Filters with Short-Circuited Stubs. 12.2 UWB-Coupled Resonator Filters. 12.3 Quasilumped Element UWB Filters. 12.4 UWB Filters Using Cascaded Miniature High- And Lowpass Filters. 12.5 UWB Filters with Notch Band(s). 13 Tunable and Reconfigurable Filters. 13.1 Tunable Combline Filters. 13.2 Tunable Open-Loop Filters without Via-Hole Grounding. 13.3 Reconfigurable Dual-Mode Bandpass Filters. 13.4 Wideband Filters with Reconfigurable Bandwidth. 13.5 Reconfigurable UWB Filters. 13.6 RF MEMS Reconfigurable Filters. 13.7 Piezoelectric Transducer Tunable Filters. 13.8 Ferroelectric Tunable Filters. Appendix: Useful Constants and Data. A.1 Physical Constants. A.2 Conductivity of Metals at 25 C (298K). A.3 Electical Resistivity rho in 10-8 m of Metals. A.4 Properties of Dielectric Substrates. Index.

4,774 citations

Journal Article
J. Walkup1
TL;DR: Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.
Abstract: Course Description This is an advanced course in which we explore the field of Statistical Optics. Topics covered include such subjects as the statistical properties of natural (thermal) and laser light, spatial and temporal coherence, effects of partial coherence on optical imaging instruments, effects on imaging due to randomly inhomogeneous media, and a statistical treatment of the detection of light. Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.

1,364 citations

Journal ArticleDOI
TL;DR: In this article, the fundamental design principles of highly thermally conductive composites were discussed and the key factors influencing the thermal conductivity of polymers, such as chain structure, crystallinity, crystal form, orientation of polymer chains, and orientation of ordered domains in both thermoplastics and thermosets were addressed.
Abstract: Thermal management is critical to the performance, lifetime, and reliability of electronic devices. With the miniaturization, integration and functionalization of electronics and the emergence of new applications such as light emitting diodes, thermal dissipation becomes a challenging problem. Addressing this challenge requires the development of novel polymer-based composite materials with enhanced thermal conductivity. In this review, the fundamental design principles of highly thermally conductive composites were discussed. The key factors influencing the thermal conductivity of polymers, such as chain structure, crystallinity, crystal form, orientation of polymer chains, and orientation of ordered domains in both thermoplastics and thermosets were addressed. The properties of thermally conductive fillers (carbon nanotubes, metal particles, and ceramic particles such as boron nitride or aluminum oxide) are summarized at length. The dependence of thermal conductivity of composites on the filler loading, filler aggregate morphology and overall composite structure is also discussed. Special attention is paid to recent advances in controlling the microstructure of polymer composites to achieve high thermal conductivity (novel approaches to control filler orientation, special design of filler agglomerates, formation of continuous filler network by self-assembly process, double percolation approach, etc.). The review also summarizes some emerging applications of thermally conductive polymer composites. Finally, we outline the challenges and outlook for thermally conductive polymer composites.

1,359 citations