scispace - formally typeset
Search or ask a question
Author

Keelin R. Schaffrath

Bio: Keelin R. Schaffrath is an academic researcher from Utah State University. The author has contributed to research in topics: Sediment & Drainage basin. The author has an hindex of 4, co-authored 15 publications receiving 574 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper evaluated the effects of burning by comparing soil water repellency, surface cover, and sediment yields from severely burned and unburned hillslopes, where the surface cover was removed by raking, and conducting rainfall simulations to compare runoff, erosion, and surface sealing from two soils with varying ash cover.
Abstract: Few studies have attempted to isolate the various factors that may cause the observed increases in peak flows and erosion after high-severity wildfires. This study evaluated the effects of burning by: (i) comparing soil water repellency, surface cover, and sediment yields from severely burned hillslopes, unburned hillslopes, and hillslopes where the surface cover was removed by raking; and (ii) conducting rainfall simulations to compare runoff, erosion, and surface sealing from two soils with varying ash cover. The fire-enhanced soil water repellency was only stronger on the burned hillslopes than the unburned hillslopes in the first summer after burning. For the first 5 yr after burning, the mean sediment yield from the burned hillslopes was 32 Mg ha ―1 , whereas the unburned hillslopes generated almost no sediment. Sediment yields from the raked and burned hillslopes were indistinguishable when they had comparable surface cover, rainfall erosivity, and soil water repellency values. The rainfall simulations on ash-covered plots generated only 21 to 49% as much runoffand 42 to 67% as much sediment as the plots with no ash cover. Soil thin sections showed that the bare plots rapidly developed a structural soil seal. Successive simulations quickly eroded the ash cover and increased runoff and sediment yields to the levels observed from the bare plots. The results indicate that: (i) post-fire sediment yields were primarily due to the loss of surface cover rather than fire-enhanced soil water repellency; (ii) surface cover is important because it inhibits soil sealing; and (iii) ash temporarily prevents soil sealing and reduces post-fire runoff and sediment yields.

314 citations

Journal ArticleDOI
TL;DR: This review identifies key research questions relevant to the Earth-surface processes community within the theme of mass and energy transfer across landscapes and offers guidance on how to identify the most appropriate topographic data type for the analysis of interest.

267 citations

Journal ArticleDOI
TL;DR: In this article, the authors compare the significance of spatially variable versus spatially uniform digital elevation models (DEMs) errors on change detection by thresholding the DEM of Difference at a 95% confidence interval (2σ).

53 citations

Journal ArticleDOI
TL;DR: Results for oxidizing and nitrate-reducing conditions indicates redox state is an important variable to consider when evaluating ground-water quality trends for redox-sensitive constituents such as nitrate and pesticides in the South Platte alluvial aquifer.
Abstract: The lower South Platte River basin of Colorado and Nebraska is an area of intense agriculture supported by surface-water diversions from the river and ground-water pumping from a valley-fill alluvial aquifer. Two well networks consisting of 45 wells installed in the South Platte alluvial aquifer were sampled in the early 1990s and again in the early 2000s to examine near-decadal ground-water quality changes in irrigated agricultural areas. Ground-water age generally increases and dissolved-oxygen content decreases with distance along flow paths and with depth below the water table, and denitrification is an important natural mitigation mechanism for nitrate in downgradient areas. Ground-water travel time from upland areas to the river ranges from 12 to 31 yr on the basis of apparent ground-water ages. Ground-water nitrate concentrations for agricultural land-use wells increased significantly for oxidized samples over the decade, and nitrogen isotope ratios for oxidized samples indicate synthetic fertilizer as the predominant nitrate source. Ground-water concentrations of atrazine, DEA, and prometon decreased significantly. The decrease in pesticide concentrations and a significant increase in the ratio of DEA to atrazine suggest decreases in pesticide concentrations are likely caused by local decreases in application rates and/or degradation processes and that atrazine degradation is promoted by oxidizing conditions. The difference between results for oxidizing and nitrate-reducing conditions indicates redox state is an important variable to consider when evaluating ground-water quality trends for redox-sensitive constituents such as nitrate and pesticides in the South Platte alluvial aquifer.

18 citations

OtherDOI
TL;DR: In this paper, the authors propose a solution to solve the problem of the problem: this paper...,.. ].. ).. )... ;.
Abstract: ..........................................................................................................................................................

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of Mediterranean post-wildfire hydrology, soil properties and soil erosion by water is presented, which highlights the characteristics of Mediterranean landscapes and highlights the impact of wildfire on hydrology and soil properties.

584 citations

Journal Article
TL;DR: In this article, the Earth system has entered a new geological epoch, spatially explicit global estimates of human populations and their use of land were analysed across the Holocene for their potential to induce irreversible novel transformation of the terrestrial biosphere.
Abstract: Human populations and their use of land have transformed most of the terrestrial biosphere into anthropogenic biomes (anthromes), causing a variety of novel ecological patterns and processes to emerge. To assess whether human populations and their use of land have directly altered the terrestrial biosphere sufficiently to indicate that the Earth system has entered a new geological epoch, spatially explicit global estimates of human populations and their use of land were analysed across the Holocene for their potential to induce irreversible novel transformation of the terrestrial biosphere. Human alteration of the terrestrial biosphere has been significant for more than 8000 years. However, only in the past century has the majority of the terrestrial biosphere been transformed into intensively used anthromes with predominantly novel anthropogenic ecological processes. At present, even were human populations to decline substantially or use of land become far more efficient, the current global extent, duration, type and intensity of human transformation of ecosystems have already irreversibly altered the terrestrial biosphere at levels sufficient to leave an unambiguous geological record differing substantially from that of the Holocene or any prior epoch. It remains to be seen whether the anthropogenic biosphere will be sustained and continue to evolve.

578 citations

Journal ArticleDOI
TL;DR: In this article, the authors identify and quantify functional relations between metrics of fire effects and soil hydraulic properties that will better represent the dynamic and transient conditions after a wildfire and determine the interaction between burned landscapes and temporally and spatially variable meso-scale precipitation, which is often the primary driver of post-wildfire runoff and erosion processes.

460 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effects of ash on the burned ecosystem, especially when transported by wind or water, and investigated its control on water and soil losses at slope and catchment scales, and examined its role in the C cycle.

430 citations

Journal ArticleDOI
19 May 2016
TL;DR: In this article, the authors present a review of the state of the art on using Structure-from-Motion (SfM) workflows in geomorphometry and give an overview of terms and fields of application.
Abstract: . Photogrammetry and geosciences have been closely linked since the late 19th century due to the acquisition of high-quality 3-D data sets of the environment, but it has so far been restricted to a limited range of remote sensing specialists because of the considerable cost of metric systems for the acquisition and treatment of airborne imagery. Today, a wide range of commercial and open-source software tools enable the generation of 3-D and 4-D models of complex geomorphological features by geoscientists and other non-experts users. In addition, very recent rapid developments in unmanned aerial vehicle (UAV) technology allow for the flexible generation of high-quality aerial surveying and ortho-photography at a relatively low cost. The increasing computing capabilities during the last decade, together with the development of high-performance digital sensors and the important software innovations developed by computer-based vision and visual perception research fields, have extended the rigorous processing of stereoscopic image data to a 3-D point cloud generation from a series of non-calibrated images. Structure-from-motion (SfM) workflows are based upon algorithms for efficient and automatic orientation of large image sets without further data acquisition information, examples including robust feature detectors like the scale-invariant feature transform for 2-D imagery. Nevertheless, the importance of carrying out well-established fieldwork strategies, using proper camera settings, ground control points and ground truth for understanding the different sources of errors, still needs to be adapted in the common scientific practice. This review intends not only to summarise the current state of the art on using SfM workflows in geomorphometry but also to give an overview of terms and fields of application. Furthermore, this article aims to quantify already achieved accuracies and used scales, using different strategies in order to evaluate possible stagnations of current developments and to identify key future challenges. It is our belief that some lessons learned from former articles, scientific reports and book chapters concerning the identification of common errors or "bad practices" and some other valuable information may help in guiding the future use of SfM photogrammetry in geosciences.

389 citations