scispace - formally typeset
Search or ask a question
Author

Kees Jalink

Bio: Kees Jalink is an academic researcher from Netherlands Cancer Institute. The author has contributed to research in topics: Lysophosphatidic acid & Second messenger system. The author has an hindex of 60, co-authored 145 publications receiving 13186 citations. Previous affiliations of Kees Jalink include University of California, San Diego & National Institutes of Health.


Papers
More filters
Journal ArticleDOI
06 Oct 1989-Cell
TL;DR: The data suggest that the mitogenic action of LPA occurs through Gi or a related pertussis toxin substrate and that the phosphoinositide hydrolysis-protein kinase C pathway is neither required nor sufficient, by itself, for mitogenesis.

809 citations

Journal ArticleDOI
TL;DR: It is found that thrombin activation of platelets prelabelled with [32P]Pi results in the rapid release of newly formed LPA into the extracellular environment, suggesting that LPA is produced during blood clotting.
Abstract: Lysophosphatidic acid (LPA) is a water-soluble phospholipid with hormone-like and growth-factor-like activities. LPA activates a putative G-protein-coupled receptor in responsive cells, but the natural source of exogenous LPA is unknown. Here we show that LPA is present in mammalian serum in an active form (bound to albumin) at concentrations of 1-5 microM, but is not detectable in platelet-poor plasma, suggesting that LPA is produced during blood clotting. We find that thrombin activation of platelets prelabelled with [32P]Pi results in the rapid release of newly formed [32P]LPA into the extracellular environment. We conclude that LPA is a novel platelet-derived lipid mediator that may play a role in inflammatory and proliferative responses to injury.

646 citations

Journal ArticleDOI
TL;DR: RhoA is essential for receptor-mediated force generation and ensuing neurite retraction in N1E-115 and PC12 cells, and that inactivation of RhoA by ADP-ribosylation abolishes actomyosin contractility and promotes neurite outgrowth.
Abstract: Addition of the bioactive phospholipid lysophosphatidic acid (LPA) or a thrombin receptor-activating peptide (TRP) to serum-starved N1E-115 or NG108-15 neuronal cells causes rapid growth cone collapse, neurite retraction, and transient rounding of the cell body. These shape changes appear to be driven by receptor-mediated contraction of the cortical actomyosin system independent of classic second messengers. Treatment of the cells with Clostridium botulinum C3 exoenzyme, which ADP-ribosylates and thereby inactivates the Rho small GTP-binding protein, inhibits LPA- and TRP-induced force generation and subsequent shape changes. C3 also inhibits LPA-induced neurite retraction in PC12 cells. Biochemical analysis reveals that the ADP-ribosylated substrate is RhoA. Prolonged C3 treatment of cells maintained in 10% serum induces the phenotype of serum-starved cells, with initial cell flattening being followed by neurite outgrowth; such C3-differentiated cells fail to retract their neurites in response to agonists. We conclude that RhoA is essential for receptor-mediated force generation and ensuing neurite retraction in N1E-115 and PC12 cells, and that inactivation of RhoA by ADP-ribosylation abolishes actomyosin contractility and promotes neurite outgrowth.

636 citations

Journal ArticleDOI
28 May 2015-Nature
TL;DR: This work shows that loss of REV7 in mouse and human cell lines re-establishes CTIP-dependent end resection of DSBs in BRCA1-deficient cells, leading to HR restoration and PARP inhibitor resistance, which is reversed by ATM kinase inhibition.
Abstract: Error-free repair of DNA double-strand breaks (DSBs) is achieved by homologous recombination (HR), and BRCA1 is an important factor for this repair pathway. In the absence of BRCA1-mediated HR, the administration of PARP inhibitors induces synthetic lethality of tumour cells of patients with breast or ovarian cancers. Despite the benefit of this tailored therapy, drug resistance can occur by HR restoration. Genetic reversion of BRCA1-inactivating mutations can be the underlying mechanism of drug resistance, but this does not explain resistance in all cases. In particular, little is known about BRCA1-independent restoration of HR. Here we show that loss of REV7 (also known as MAD2L2) in mouse and human cell lines re-establishes CTIP-dependent end resection of DSBs in BRCA1-deficient cells, leading to HR restoration and PARP inhibitor resistance, which is reversed by ATM kinase inhibition. REV7 is recruited to DSBs in a manner dependent on the H2AX-MDC1-RNF8-RNF168-53BP1 chromatin pathway, and seems to block HR and promote end joining in addition to its regulatory role in DNA damage tolerance. Finally, we establish that REV7 blocks DSB resection to promote non-homologous end-joining during immunoglobulin class switch recombination. Our results reveal an unexpected crucial function of REV7 downstream of 53BP1 in coordinating pathological DSB repair pathway choices in BRCA1-deficient cells.

469 citations

Journal ArticleDOI
TL;DR: By undergoing a cAMP‐induced conformational change, CFP–Epac–YFP serves as a highly sensitive cAMP indicator in vivo, and when compared with a protein kinase A (PKA)‐based sensor, Epac‐based cAMP probes show an extended dynamic range and a better signal‐to‐noise ratio.
Abstract: Epac1 is a guanine nucleotide exchange factor for Rap1 that is activated by direct binding of cAMP. In vitro studies suggest that cAMP relieves the interaction between the regulatory and catalytic domains of Epac. Here, we monitor Epac1 activation in vivo by using a CFP–Epac–YFP fusion construct. When expressed in mammalian cells, CFP–Epac–YFP shows significant fluorescence resonance energy transfer (FRET). FRET rapidly decreases in response to the cAMP-raising agents, whereas it fully recovers after addition of cAMP-lowering agonists. Thus, by undergoing a cAMP-induced conformational change, CFP–Epac–YFP serves as a highly sensitive cAMP indicator in vivo. When compared with a protein kinase A (PKA)-based sensor, Epac-based cAMP probes show an extended dynamic range and a better signal-to-noise ratio; furthermore, as a single polypeptide, CFP–Epac–YFP does not suffer from the technical problems encountered with multisubunit PKA-based sensors. These properties make Epac-based FRET probes the preferred indicators for monitoring cAMP levels in vivo.

464 citations


Cited by
More filters
Journal ArticleDOI
23 Jan 1998-Science
TL;DR: Members of the Rho family of small guanosine triphosphatases have emerged as key regulators of the actin cytoskeleton, and through their interaction with multiple target proteins, they ensure coordinated control of other cellular activities such as gene transcription and adhesion.
Abstract: The actin cytoskeleton mediates a variety of essential biological functions in all eukaryotic cells. In addition to providing a structural framework around which cell shape and polarity are defined, its dynamic properties provide the driving force for cells to move and to divide. Understanding the biochemical mechanisms that control the organization of actin is thus a major goal of contemporary cell biology, with implications for health and disease. Members of the Rho family of small guanosine triphosphatases have emerged as key regulators of the actin cytoskeleton, and furthermore, through their interaction with multiple target proteins, they ensure coordinated control of other cellular activities such as gene transcription and adhesion.

5,969 citations

Journal ArticleDOI
TL;DR: The Ca2+-signalling toolkit is used to assemble signalling systems with very different spatial and temporal dynamics and has a direct role in controlling the expression patterns of its signalling systems that are constantly being remodelled in both health and disease.
Abstract: Ca2+ is a highly versatile intracellular signal that operates over a wide temporal range to regulate many different cellular processes. An extensive Ca2+-signalling toolkit is used to assemble signalling systems with very different spatial and temporal dynamics. Rapid highly localized Ca2+ spikes regulate fast responses, whereas slower responses are controlled by repetitive global Ca2+ transients or intracellular Ca2+ waves. Ca2+ has a direct role in controlling the expression patterns of its signalling systems that are constantly being remodelled in both health and disease.

5,042 citations

Journal ArticleDOI
07 Aug 1992-Cell
TL;DR: Rho, a ras-related GTP-binding protein, rapidly stimulated stress fiber and focal adhesion formation when microinjected into serum-starved Swiss 3T3 cells, implying that rho is essential specifically for the coordinated assembly of focal adhesions and stress fibers induced by growth factors.

4,365 citations

Journal ArticleDOI
07 Aug 1992-Cell
TL;DR: It is proposed that rac and rho are essential components of signal transduction pathways linking growth factors to the organization of polymerized actin and that growth factors act through rac to stimulate this rho-dependent response.

3,294 citations

Journal Article
TL;DR: In this paper, the coding exons of the family of 518 protein kinases were sequenced in 210 cancers of diverse histological types to explore the nature of the information that will be derived from cancer genome sequencing.
Abstract: AACR Centennial Conference: Translational Cancer Medicine-- Nov 4-8, 2007; Singapore PL02-05 All cancers are due to abnormalities in DNA. The availability of the human genome sequence has led to the proposal that resequencing of cancer genomes will reveal the full complement of somatic mutations and hence all the cancer genes. To explore the nature of the information that will be derived from cancer genome sequencing we have sequenced the coding exons of the family of 518 protein kinases, ~1.3Mb DNA per cancer sample, in 210 cancers of diverse histological types. Despite the screen being directed toward the coding regions of a gene family that has previously been strongly implicated in oncogenesis, the results indicate that the majority of somatic mutations detected are “passengers”. There is considerable variation in the number and pattern of these mutations between individual cancers, indicating substantial diversity of processes of molecular evolution between cancers. The imprints of exogenous mutagenic exposures, mutagenic treatment regimes and DNA repair defects can all be seen in the distinctive mutational signatures of individual cancers. This systematic mutation screen and others have previously yielded a number of cancer genes that are frequently mutated in one or more cancer types and which are now anticancer drug targets (for example BRAF , PIK3CA , and EGFR ). However, detailed analyses of the data from our screen additionally suggest that there exist a large number of additional “driver” mutations which are distributed across a substantial number of genes. It therefore appears that cells may be able to utilise mutations in a large repertoire of potential cancer genes to acquire the neoplastic phenotype. However, many of these genes are employed only infrequently. These findings may have implications for future anticancer drug development.

2,737 citations