scispace - formally typeset
Search or ask a question
Author

Kei Shinagawa

Bio: Kei Shinagawa is an academic researcher from Hiroshima University. The author has contributed to research in topics: Metastasis & Cancer. The author has an hindex of 12, co-authored 24 publications receiving 686 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Collectively, MSCs migrate and differentiate into CAFs in tumor stroma, and they promote growth and metastasis of colon cancer by enhancing angiogenesis, migration and invasion and by inhibiting apoptosis of tumor cells.
Abstract: Recently, mesenchymal stem cells (MSCs) were reported to migrate to tumor stroma as well as injured tissue. We examined the role of human MSCs in tumor stroma using an orthotopic nude mice model of KM12SM colon cancer. In in vivo experiments, systemically injected MSCs migrated to the stroma of orthotopic colon tumors and metastatic liver tumors. Orthotopic transplantation of KM12SM cells mixed with MSCs resulted in greater tumor weight than did transplantation of KM12SM cells alone. The survival rate was significantly lower in the mixed-cell group, and liver metastasis was seen only in this group. Moreover, tumors resulting from transplantation of mixed cells had a significantly higher proliferating cell nuclear antigen labeling index, significantly greater microvessel area and significantly lower apoptotic index. Splenic injection of KM12SM cells mixed with MSCs, in comparison to splenic injection of KM12SM cells alone, resulted in a significantly greater number of liver metastases. MSCs incorporated into the stroma of primary and metastatic tumors expressed α-smooth muscle actin and platelet-derived growth factor receptor-β as carcinoma-associated fibroblast (CAF) markers. In in vitro experiments, KM12SM cells recruited MSCs, and MSCs stimulated migration and invasion of tumor cells through the release of soluble factors. Collectively, MSCs migrate and differentiate into CAFs in tumor stroma, and they promote growth and metastasis of colon cancer by enhancing angiogenesis, migration and invasion and by inhibiting apoptosis of tumor cells.

278 citations

Journal ArticleDOI
TL;DR: The data indicate that secretion of PDGF‐B by gastric carcinoma cells and expression ofPDGF‐Rβ by tumor‐associated stromal cells are associated with lymphatic metastasis.
Abstract: Recent study of murine fibrosarcoma has revealed that platelet-derived growth factor (PDGF) plays a direct role in promoting lymphangiogenesis and metastatic spread to lymph nodes. Thus, we investigated the relation between PDGF and PDGF receptor (PDGF-R) expression and lymphatic metastasis in human gastric carcinoma. We examined PDGF-B and PDGF-Rβ expression in four human gastric carcinoma cell lines (TMK-1, MKN-1, MKN-45, and KKLS) and in 38 surgical specimens of gastric carcinoma. PDGF-B and PDGF-Rβ expression was examined by immunofluorescence in surgical specimens and in human gastric carcinoma cells (TMK-1) implanted orthotopically in nude mice. Groups of mice (n = 10, each) received saline (control) or PDGF-R tyrosine kinase inhibitor imatinib. PDGF-B and PDGF-Rβ mRNA expression was significantly higher in patients with lymph node metastasis than in those without and was also significantly higher in diffuse-type carcinoma than in intestinal-type carcinoma. In surgical specimens, tumor cells expressed PDGF-B, but PDGF-Rβ was expressed predominantly by stromal cells. Under culture conditions, expression of PDGF-B mRNA was found in all of the gastric cell lines, albeit at different levels. In orthotopic TMK-1 tumors, cancer cells expressed PDGF-B but not PDGF-Rβ. PDGF-Rβ was expressed by stromal cells, including lymphatic endothelial cells. Four weeks of treatment with imatinib significantly decreased the area of lymphatic vessels. Our data indicate that secretion of PDGF-B by gastric carcinoma cells and expression of PDGF-Rβ by tumor-associated stromal cells are associated with lymphatic metastasis. Blockade of PDGF-R signaling pathways may inhibit lymph node metastasis of gastric carcinoma.

72 citations

Journal ArticleDOI
TL;DR: The data suggest that blockade of PDGF signaling pathways influences the interaction between bone marrow‐derived MSCs and tumor cells in the tumor microenvironment and, hence, inhibits the progressive growth of colon cancer.
Abstract: Bone marrow-derived mesenchymal stem cells (MSCs) are reported to contribute to formation of tumor-promoting stromal cells. We reported recently that, in an orthotopic nude mice model of colon cancer, MSCs traveled to tumor stroma, where they differentiated into carcinoma-associated fibroblast (CAF)-like cells. We also found that CAFs express platelet-derived growth factor receptor (PDGFR) at a high level and that imatinib therapy targeting PDGFR in CAFs inhibits growth and metastasis of human colon cancer. These findings led us to examine whether the tumor-promoting effect of MSCs is impaired by blockade of PDGFR signaling achieved with imatinib. Orthotopic transplantation and splenic injection of human MSCs along with KM12SM human colon cancer cells, in comparison with transplantation of KM12SM cells alone, resulted in significantly greater promotion of tumor growth and liver metastasis. The KM12SM + MSC xenograft enhanced cell proliferation and angiogenesis and inhibited tumor cell apoptosis. When tumor-bearing animals were treated with imatinib, there was no significant increase in primary tumor volume or total volume of liver metastases, despite the KM12SM+MSC xenograft, and survival in the mixed-cell group was prolonged by imatinib treatment. Moreover, the ability of MSCs to migrate to tumor stroma was impaired, and the number of MSCs surviving in the tumor microenvironment was significantly decreased. In in vitro experiments, treatment with imatinib inhibited migration of MSCs. Our data suggest that blockade of PDGF signaling pathways influences the interaction between bone marrow-derived MSCs and tumor cells in the tumor microenvironment and, hence, inhibits the progressive growth of colon cancer.

66 citations

Journal ArticleDOI
TL;DR: CCL3‐CCR5‐mediated fibroblast accumulation may be required, in addition to leukocyte infiltration, to induce full‐blown colitis‐associated carcinogenesis, and shed light on a therapeutic potential of CCR5 antagonist for patients with colitis-associated cancer.
Abstract: Patients with inflammatory bowel diseases often develop colon carcinoma. Combined treatment of azoxymethane (AOM) and dextran sulfate sodium (DSS) recapitulates colitis-associated cancer in mice. AOM/DSS-induced tumor formation was reduced in CCL3- or its specific receptor, CCR5-deficient mice despite the presence of a massive infiltration of inflammatory cells. However, AOM/DSS-induced type I collagen-positive fibroblast accumulation in the colon was reduced in CCL3- or CCR5-deficient mice. This was associated with depressed expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF), which is expressed mainly by fibroblasts. Moreover in vitro, CCL3 induced fibroblasts to proliferate and to enhance HB-EGF expression. Furthermore, CCR5 blockade reduced tumor formation together with reduced fibroblast accumulation and HB-EGF expression, even when administered after the development of multiple colon tumors. Thus, CCL3-CCR5-mediated fibroblast accumulation may be required, in addition to leukocyte infiltration, to induce full-blown colitis-associated carcinogenesis. Our studies shed light on a therapeutic potential of CCR5 antagonist for patients with colitis-associated cancer.

64 citations

Journal ArticleDOI
TL;DR: The results suggest that MSCs induce EMT in colon cancer cells via direct cell-to-cell contact and may play an important role in Colon cancer metastasis.

57 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Current knowledge related to the potential use of MSC-derived EVs in various diseases is reviewed and the promising future for EVs as an alternative, cell-free therapy is discussed.

783 citations

Journal ArticleDOI
11 Dec 2015-Cancers
TL;DR: It is shown that CAFs are an important IL-6 source and that anti-IL-6 receptor antibody suppressed angiogenesis and inhibited tumor-stroma interactions, and CAFs contribute to drug-resistance acquisition in cancer cells.
Abstract: Cancer tissues are composed of cancer cells and the surrounding stromal cells (e.g., fibroblasts, vascular endothelial cells, and immune cells), in addition to the extracellular matrix. Most studies investigating carcinogenesis and the progression, invasion, metastasis, and angiogenesis of cancer have focused on alterations in cancer cells, including genetic and epigenetic changes. Recently, interactions between cancer cells and the stroma have attracted considerable attention, and increasing evidence has accumulated on this. Several researchers have gradually clarified the origins, features, and roles of cancer-associated fibroblasts (CAFs), a major component of the cancer stroma. CAFs function in a similar manner to myofibroblasts during wound healing. We previously reported the relationship between CAFs and angiogenesis. Interleukin-6 (IL-6), a multifunctional cytokine, plays a central role in regulating inflammatory and immune responses, and important roles in the progression, including proliferation, migration, and angiogenesis, of several cancers. We showed that CAFs are an important IL-6 source and that anti-IL-6 receptor antibody suppressed angiogenesis and inhibited tumor-stroma interactions. Furthermore, CAFs contribute to drug-resistance acquisition in cancer cells. The interaction between cancer cells and the stroma could be a potential target for anti-cancer therapy.

620 citations

Journal ArticleDOI
TL;DR: It is found that the timing of MSC introduction into tumors may be a critical element to safely develop MSCs as a therapeutic tool and to advance the understanding of the role of tumor stroma in carcinogenesis.
Abstract: The discovery that mesenchymal stem cells (MSCs) are recruited into tumors has led to a great deal of interest over the past decade in the function of MSCs in tumors. To address this, investigators have used a variety of tumor models in which MSCs are added exogenously to determine their impact on tumor development. Interestingly, many studies have reported contradicting results, with some investigators finding that MSCs promote tumor growth and others reporting that MSCs inhibit tumor growth. Many mechanisms have been reported to account for these observations, such as chemokine signaling, modulation of apoptosis, vascular support, and immune modulation. In this review, we analyzed the differences in the methodology of the studies reported and found that the timing of MSC introduction into tumors may be a critical element. Understanding the conditions in which MSCs enhance tumor growth and metastasis is crucial, both to safely develop MSCs as a therapeutic tool and to advance our understanding of the role of tumor stroma in carcinogenesis.

501 citations

Journal ArticleDOI
TL;DR: The microenvironment seems to be of crucial importance for primary tumor growth as well as metastasis formation, and data strongly put forward the niche as an important target for novel therapies.
Abstract: Tumors are being increasingly perceived as abnormal organs that, in many respects, recapitulate the outgrowth and differentiation patterns of normal tissues. In line with this idea is the observation that only a small fraction of tumor cells is capable of initiating a new tumor. Because of the features that these cells share with somatic stem cells, they have been termed cancer stem cells (CSC). Normal stem cells reside in a "stem cell niche" that maintains them in a stem-like state. Recent data suggest that CSCs also rely on a similar niche, dubbed the "CSC niche," which controls their self-renewal and differentiation. Moreover, CSCs can be generated by the microenvironment through induction of CSC features in more differentiated tumor cells. In addition to a role in CSC maintenance, the microenvironment is hypothesized to be involved in metastasis by induction of the epithelial-mesenchymal transition, leading to dissemination and invasion of tumor cells. The localization of secondary tumors also seems to be orchestrated by the microenvironment, which is suggested to form a premetastatic niche. Thus, the microenvironment seems to be of crucial importance for primary tumor growth as well as metastasis formation. Combined with its role in the protection of CSCs against genotoxic insults, these data strongly put forward the niche as an important target for novel therapies.

490 citations

Journal ArticleDOI
TL;DR: This comprehensive review discusses the limitations of inhibiting VEGF signaling alone as an antiangiogenic strategy, the importance of other angiogenic pathways including PDGF/PDGFR and FGF/FGFR, and the novel current and emerging agents that target multiple angiogenesis pathways for the treatment of advanced solid tumors.
Abstract: Angiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of angiogenesis is also a fundamental process found in several pathologic conditions, including cancer. As a process required for invasion and metastasis, tumor angiogenesis constitutes an important point of control of cancer progression. Although not yet completely understood, the complex process of tumor angiogenesis involves highly regulated orchestration of multiple signaling pathways. The proangiogenic signaling molecule vascular endothelial growth factor (VEGF) and its cognate receptor (VEGF receptor 2 [VEGFR-2]) play a central role in angiogenesis and often are highly expressed in human cancers, and initial clinical efforts to develop antiangiogenic treatments focused largely on inhibiting VEGF/VEGFR signaling. Such approaches, however, often lead to transient responses and further disease progression because angiogenesis is regulated by multiple pathways that are able to compensate for each other when single pathways are inhibited. The platelet-derived growth factor (PDGF) and PDGF receptor (PDGFR) and fibroblast growth factor (FGF) and FGF receptor (FGFR) pathways, for example, provide potential escape mechanisms from anti-VEGF/VEGFR therapy that could facilitate resumption of tumor growth. Accordingly, more recent treatments have focused on inhibiting multiple signaling pathways simultaneously. This comprehensive review discusses the limitations of inhibiting VEGF signaling alone as an antiangiogenic strategy, the importance of other angiogenic pathways including PDGF/PDGFR and FGF/FGFR, and the novel current and emerging agents that target multiple angiogenic pathways for the treatment of advanced solid tumors. Implications for Practice: Significant advances in cancer treatment have been achieved with the development of antiangiogenic agents, the majority of which have focused on inhibition of the vascular endothelial growth factor (VEGF) pathway. VEGF targeting alone, however, has not proven to be as efficacious as originally hoped, and it is increasingly clear that there are many interconnected and compensatory pathways that can overcome VEGF-targeted inhibition of angiogenesis. Maximizing the potential of antiangiogenic therapy is likely to require a broader therapeutic approach using a new generation of multitargeted antiangiogenic agents.

413 citations