scispace - formally typeset
Search or ask a question
Author

Kei Tobiume

Bio: Kei Tobiume is an academic researcher from Tokyo Medical and Dental University. The author has contributed to research in topics: ASK1 & MAP kinase kinase kinase. The author has an hindex of 8, co-authored 9 publications receiving 5654 citations. Previous affiliations of Kei Tobiume include Japanese Foundation for Cancer Research.

Papers
More filters
Journal ArticleDOI
TL;DR: Evidence that Trx is a negative regulator of ASK1 suggests possible mechanisms for redox regulation of the apoptosis signal transduction pathway as well as the effects of antioxidants against cytokine‐ and stress‐induced apoptosis.
Abstract: Apoptosis signal‐regulating kinase (ASK) 1 was recently identified as a mitogen‐activated protein (MAP) kinase kinase kinase which activates the c‐Jun N‐terminal kinase (JNK) and p38 MAP kinase pathways and is required for tumor necrosis factor (TNF)‐α‐induced apoptosis; however, the mechanism regulating ASK1 activity is unknown. Through genetic screening for ASK1‐binding proteins, thioredoxin (Trx), a reduction/oxidation (redox)‐regulatory protein thought to have anti‐apoptotic effects, was identified as an interacting partner of ASK1. Trx associated with the N‐terminal portion of ASK1 in vitro and in vivo . Expression of Trx inhibited ASK1 kinase activity and the subsequent ASK1‐dependent apoptosis. Treatment of cells with N ‐acetyl‐l‐cysteine also inhibited serum withdrawal‐, TNF‐α‐ and hydrogen peroxide‐induced activation of ASK1 as well as apoptosis. The interaction between Trx and ASK1 was found to be highly dependent on the redox status of Trx. Moreover, inhibition of Trx resulted in activation of endogenous ASK1 activity, suggesting that Trx is a physiological inhibitor of ASK1. The evidence that Trx is a negative regulator of ASK1 suggests possible mechanisms for redox regulation of the apoptosis signal transduction pathway as well as the effects of antioxidants against cytokine‐ and stress‐induced apoptosis.

2,377 citations

Journal ArticleDOI
TL;DR: It is suggested that ASK1 is a key element in ER stress-induced cell death that plays an important role in the neuropathological alterations in polyQ diseases.
Abstract: Expansion of CAG trinucleotide repeats that encode polyglutamine is the underlying cause of at least nine inherited human neurodegenerative disorders, including Huntington's disease and spinocerebellar ataxias. PolyQ fragments accumulate as aggregates in the cytoplasm and/or in the nucleus, and induce neuronal cell death. However, the molecular mechanism of polyQ-induced cell death is controversial. Here, we show the following: (1) polyQ with pathogenic repeat length triggers ER stress through proteasomal dysfunction; (2) ER stress activates ASK 1 through formation of an IRE1-TRAF2-ASK1 complex; and (3) ASK1(-/-) primary neurons are defective in polyQ-, proteasome inhibitor-, and ER stress-induced JNK activation and cell death. These findings suggest that ASK1 is a key element in ER stress-induced cell death that plays an important role in the neuropathological alterations in polyQ diseases.

1,321 citations

Journal ArticleDOI
TL;DR: It is shown that by deleting ASK1 in mice, TNF‐ and H2O2‐induced sustained activations of JNK and p38 are lost inASK1−/− embryonic fibroblasts, and that ASK 1−-/− cells are resistant to TNF- and H1N1‐induced apoptosis.
Abstract: Apoptosis signal‐regulating kinase (ASK) 1 is activated in response to various cytotoxic stresses including TNF, Fas and reactive oxygen species (ROS) such as H2O2, and activates c‐Jun NH2‐terminal kinase (JNK) and p38. However, the roles of JNK and p38 signaling pathways during apoptosis have been controversial. Here we show that by deleting ASK1 in mice, TNF‐ and H2O2‐induced sustained activations of JNK and p38 are lost in ASK1 −/− embryonic fibroblasts, and that ASK1 −/− cells are resistant to TNF‐ and H2O2‐induced apoptosis. TNF‐ but not Fas‐induced apoptosis requires ROS‐dependent activation of ASK1–JNK/p38 pathways. Thus, ASK1 is selectively required for TNF‐ and oxidative stress‐induced sustained activations of JNK/p38 and apoptosis.

1,171 citations

Journal ArticleDOI
TL;DR: It is shown that phosphorylation of Thr845 at the activation loop is essential for ASK1 to be activated by H2O2, and it is proposed that this potential Thr8 45 kinase may be an ignition kinase that triggers Thr 845 phosphorylated in oligomerized and activation‐competent forms of AsK1.
Abstract: Apoptosis signal-regulating kinase 1 (ASK1) is a MAPKKK family member which activates c-Jun N-terminal kinase (JNK) and p38. In non-stressed cells, ASK1 exists as an inactive complex with the reduced form of thioredoxin. Oxidative stress such as hydrogen peroxide (H2O2) disrupts the ASK1-thioredoxin complex by oxidization of thioredoxin and thereby activates ASK1. The precise mechanism by which ASK1 is activated after its release from thioredoxin is unknown. Here we show that phosphorylation of Thr845 at the activation loop is essential for ASK1 to be activated by H2O2. ASK1 appears to form a silent homo-oligomer through its C-terminal coiled-coil region in non-stressed cells. Following H2O2 treatment, pre-existing ASK1 oligomer undergoes conformational change and creates a new interface within an oligomer, which ultimately leads to trans-autophosphorylation of Thr845. Thus, direct interaction via the coiled-coil region is required for self-scaffolding but not sufficient for activation of ASK1. Importantly, Thr845 of ASK1 can also be trans-phosphorylated by an unidentified Thr845 kinase in response to H2O2 treatment. We propose that this potential Thr845 kinase may be an ignition kinase that triggers Thr845 phosphorylation in oligomerized and activation-competent forms of ASK1.

336 citations

Journal ArticleDOI
TL;DR: PP5 appears to act as a physiological inhibitor of ASK1–JNK/p38 pathways by negative feedback and inhibited not only H2O2‐induced sustained activation of AsK1 but also ASK 1‐dependent apoptosis.
Abstract: Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase (MAPKKK) that activates the JNK and p38 MAP kinase cascades and is activated in response to oxidative stress such as hydrogen peroxide (H(2)O(2)). A yeast two-hybrid screening identified a serine/threonine protein phosphatase 5 (PP5) as a binding partner of ASK1. PP5 directly dephosphorylated an essential phospho-threonine residue within the kinase domain of ASK1 and thereby inactivated ASK1 activity in vitro and in vivo. The interaction between PP5 and ASK1 was induced by H(2)O(2) treatment and was followed by the decrease in ASK1 activity. PP5 inhibited not only H(2)O(2)-induced sustained activation of ASK1 but also ASK1-dependent apoptosis. Thus, PP5 appears to act as a physiological inhibitor of ASK1-JNK/p38 pathways by negative feedback.

281 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Abstract: At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, how...

9,131 citations

Journal ArticleDOI
09 Nov 2000-Nature
TL;DR: Evidence that the appropriate and inappropriate production of oxidants, together with the ability of organisms to respond to oxidative stress, is intricately connected to ageing and life span is reviewed.
Abstract: Living in an oxygenated environment has required the evolution of effective cellular strategies to detect and detoxify metabolites of molecular oxygen known as reactive oxygen species. Here we review evidence that the appropriate and inappropriate production of oxidants, together with the ability of organisms to respond to oxidative stress, is intricately connected to ageing and life span.

8,665 citations

Journal ArticleDOI
TL;DR: Together, at least three mechanistically distinct arms of the UPR regulate the expression of numerous genes that function within the secretory pathway but also affect broad aspects of cell fate and the metabolism of proteins, amino acids and lipids.
Abstract: The endoplasmic reticulum (ER) responds to the accumulation of unfolded proteins in its lumen (ER stress) by activating intracellular signal transduction pathways - cumulatively called the unfolded protein response (UPR). Together, at least three mechanistically distinct arms of the UPR regulate the expression of numerous genes that function within the secretory pathway but also affect broad aspects of cell fate and the metabolism of proteins, amino acids and lipids. The arms of the UPR are integrated to provide a response that remodels the secretory apparatus and aligns cellular physiology to the demands imposed by ER stress.

5,701 citations

Journal ArticleDOI
TL;DR: This review focuses on the molecular mechanisms through which ROS directly interact with critical signaling molecules to initiate signaling in a broad variety of cellular processes, such as proliferation and survival, ROS homeostasis and antioxidant gene regulation, mitochondrial oxidative stress, apoptosis, and aging.

3,372 citations

Journal ArticleDOI
TL;DR: This review focuses on the biochemical components and regulation of mammalian stress-regulated mitogen-activated protein kinase (MAPK) pathways, and the nuclear factor-kappa B pathway, a second stress signaling paradigm.
Abstract: The molecular details of mammalian stress-activated signal transduction pathways have only begun to be dissected. This, despite the fact that the impact of these pathways on the pathology of chroni...

3,338 citations