scispace - formally typeset
Search or ask a question
Author

Keigo Hirakawa

Bio: Keigo Hirakawa is an academic researcher from University of Dayton. The author has contributed to research in topics: Pixel & Color filter array. The author has an hindex of 24, co-authored 107 publications receiving 2347 citations. Previous affiliations of Keigo Hirakawa include University of California & Cornell University.


Papers
More filters
Journal ArticleDOI
TL;DR: The proposed demosaicing algorithm estimates missing pixels by interpolating in the direction with fewer color artifacts, and the aliasing problem is addressed by applying filterbank techniques to 2-D directional interpolation.
Abstract: A cost-effective digital camera uses a single-image sensor, applying alternating patterns of red, green, and blue color filters to each pixel location. A way to reconstruct a full three-color representation of color images by estimating the missing pixel components in each color plane is called a demosaicing algorithm. This paper presents three inherent problems often associated with demosaicing algorithms that incorporate two-dimensional (2-D) directional interpolation: misguidance color artifacts, interpolation color artifacts, and aliasing. The level of misguidance color artifacts present in two images can be compared using metric neighborhood modeling. The proposed demosaicing algorithm estimates missing pixels by interpolating in the direction with fewer color artifacts. The aliasing problem is addressed by applying filterbank techniques to 2-D directional interpolation. The interpolation artifacts are reduced using a nonlinear iterative procedure. Experimental results using digital images confirm the effectiveness of this approach.

462 citations

Proceedings ArticleDOI
24 Nov 2003
TL;DR: The proposed demosaicing algorithm estimates missing pixels by interpolating in the direction with fewer color artifacts, and the aliasing problem is addressed by applying filterbank techniques to directional interpolation.
Abstract: Most cost-effective digital camera uses a single image sensor, applying alternating patterns of red, green, and blue color filters to each pixel location. Demosaicing algorithm reconstructs a full three-color representation of color images from this sensor data. This paper identifies three inherent problems often associated with directional interpolation approach to demosaicing algorithms: misguidance color artifacts, interpolation color artifacts, and aliasing. The level of misguidance color artifacts present in two images can be compared using metric neighborhood modeling. The proposed demosaicing algorithm estimates missing pixels by interpolating in the direction with fewer color artifacts. The aliasing problem is addressed by applying filterbank techniques to directional interpolation. The interpolation artifacts are reduced using a nonlinear iterative procedure. Experimental results using digital images confirm the effectiveness of this approach.

192 citations

Journal ArticleDOI
TL;DR: Empirical evaluations on multiple color image test sets support the theoretical results, and indicate the potential of these patterns to increase spatial resolution for fixed sensor size, and to contribute to improved reconstruction fidelity as well as significantly reduced hardware complexity.
Abstract: In digital imaging applications, data are typically obtained via a spatial subsampling procedure implemented as a color filter array - a physical construction whereby only a single color value is measured at each pixel location. Owing to the growing ubiquity of color imaging and display devices, much recent work has focused on the implications of such arrays for subsequent digital processing, including in particular the canonical demosaicking task of reconstructing a full color image from spatially subsampled and incomplete color data acquired under a particular choice of array pattern. In contrast to the majority of the demosaicking literature, we consider here the problem of color filter array design and its implications for spatial reconstruction quality. We pose this problem formally as one of simultaneously maximizing the spectral radii of luminance and chrominance channels subject to perfect reconstruction, and - after proving sub-optimality of a wide class of existing array patterns - provide a constructive method for its solution that yields robust, new panchromatic designs implementable as subtractive colors. Empirical evaluations on multiple color image test sets support our theoretical results, and indicate the potential of these patterns to increase spatial resolution for fixed sensor size, and to contribute to improved reconstruction fidelity as well as significantly reduced hardware complexity.

182 citations

Journal ArticleDOI
TL;DR: An efficient maximum likelihood approach for one part of the color constancy problem: removing from an image the color cast caused by the spectral distribution of the dominating scene illuminant by developing a statistical model for the spatial distribution of colors in white balanced images and using this model to infer illumination parameters as those being most likely under this model.
Abstract: We introduce an efficient maximum likelihood approach for one part of the color constancy problem: removing from an image the color cast caused by the spectral distribution of the dominating scene illuminant. We do this by developing a statistical model for the spatial distribution of colors in white balanced images (i.e., those that have no color cast), and then using this model to infer illumination parameters as those being most likely under our model. The key observation is that by applying spatial band-pass filters to color images one unveils color distributions that are unimodal, symmetric, and well represented by a simple parametric form. Once these distributions are fit to training data, they enable efficient maximum likelihood estimation of the dominant illuminant in a new image, and they can be combined with statistical prior information about the illuminant in a very natural manner. Experimental evaluation on standard data sets suggests that the approach performs well.

172 citations

Journal ArticleDOI
TL;DR: The experimental results confirm that the proposed method suppresses noise (CMOS/CCD image sensor noise model) while effectively interpolating the missing pixel components, demonstrating a significant improvement in image quality when compared to treating demosaicing and denoising problems independently.
Abstract: The output image of a digital camera is subject to a severe degradation due to noise in the image sensor. This paper proposes a novel technique to combine demosaicing and denoising procedures systematically into a single operation by exploiting their obvious similarities. We first design a filter as if we are optimally estimating a pixel value from a noisy single-color (sensor) image. With additional constraints, we show that the same filter coefficients are appropriate for color filter array interpolation (demosaicing) given noisy sensor data. The proposed technique can combine many existing denoising algorithms with the demosaicing operation. In this paper, a total least squares denoising method is used to demonstrate the concept. The algorithm is tested on color images with pseudorandom noise and on raw sensor data from a real CMOS digital camera that we calibrated. The experimental results confirm that the proposed method suppresses noise (CMOS/CCD image sensor noise model) while effectively interpolating the missing pixel components, demonstrating a significant improvement in image quality when compared to treating demosaicing and denoising problems independently

151 citations


Cited by
More filters
Journal Article
J. Walkup1
TL;DR: Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.
Abstract: Course Description This is an advanced course in which we explore the field of Statistical Optics. Topics covered include such subjects as the statistical properties of natural (thermal) and laser light, spatial and temporal coherence, effects of partial coherence on optical imaging instruments, effects on imaging due to randomly inhomogeneous media, and a statistical treatment of the detection of light. Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.

1,364 citations

Journal ArticleDOI
01 Apr 1956-Nature
TL;DR: The Foundations of Statistics By Prof. Leonard J. Savage as mentioned in this paper, p. 48s. (Wiley Publications in Statistics.) Pp. xv + 294. (New York; John Wiley and Sons, Inc., London: Chapman and Hall, Ltd., 1954).
Abstract: The Foundations of Statistics By Prof. Leonard J. Savage. (Wiley Publications in Statistics.) Pp. xv + 294. (New York; John Wiley and Sons, Inc.; London: Chapman and Hall, Ltd., 1954.) 48s. net.

844 citations

Journal ArticleDOI
TL;DR: A comprehensive optimization method to arrive at the spatial and spectral layout of the color filter array of a GAP camera is presented and a novel algorithm for reconstructing the under-sampled channels of the image while minimizing aliasing artifacts is developed.
Abstract: We propose the concept of a generalized assorted pixel (GAP) camera, which enables the user to capture a single image of a scene and, after the fact, control the tradeoff between spatial resolution, dynamic range and spectral detail. The GAP camera uses a complex array (or mosaic) of color filters. A major problem with using such an array is that the captured image is severely under-sampled for at least some of the filter types. This leads to reconstructed images with strong aliasing. We make four contributions in this paper: 1) we present a comprehensive optimization method to arrive at the spatial and spectral layout of the color filter array of a GAP camera. 2) We develop a novel algorithm for reconstructing the under-sampled channels of the image while minimizing aliasing artifacts. 3) We demonstrate how the user can capture a single image and then control the tradeoff of spatial resolution to generate a variety of images, including monochrome, high dynamic range (HDR) monochrome, RGB, HDR RGB, and multispectral images. 4) Finally, the performance of our GAP camera has been verified using extensive simulations that use multispectral images of real world scenes. A large database of these multispectral images has been made available at http://wwwl.cs.columbia.edu/ CAVE/projects/gap_camera/ for use by the research community.

833 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: In this paper, a dataset of short-exposure low-light images and reference images is introduced to support the development of learning-based pipelines for low-luminance image processing.
Abstract: Imaging in low light is challenging due to low photon count and low SNR. Short-exposure images suffer from noise, while long exposure can induce blur and is often impractical. A variety of denoising, deblurring, and enhancement techniques have been proposed, but their effectiveness is limited in extreme conditions, such as video-rate imaging at night. To support the development of learning-based pipelines for low-light image processing, we introduce a dataset of raw short-exposure low-light images, with corresponding long-exposure reference images. Using the presented dataset, we develop a pipeline for processing low-light images, based on end-to-end training of a fully-convolutional network. The network operates directly on raw sensor data and replaces much of the traditional image processing pipeline, which tends to perform poorly on such data. We report promising results on the new dataset, analyze factors that affect performance, and highlight opportunities for future work.

647 citations

Journal ArticleDOI
TL;DR: The author begins by discussing the image formation process and examines the demosaicking methods in three groups: the first group consists of heuristic approaches, the second group formulates demosaicked as a restoration problem, and the third group is a generalization that uses the spectral filtering model given in Wandell.
Abstract: The author begins by discussing the image formation process. The demosaicking methods are examined in three groups: the first group consists of heuristic approaches. The second group formulates demosaicking as a restoration problem. The third group is a generalization that uses the spectral filtering model given in Wandell.

616 citations