scispace - formally typeset
Search or ask a question
Author

Keiji Fukuda

Bio: Keiji Fukuda is an academic researcher from Li Ka Shing Faculty of Medicine, University of Hong Kong. The author has contributed to research in topics: Influenza A virus subtype H5N1 & Influenza A virus. The author has an hindex of 46, co-authored 95 publications receiving 27831 citations. Previous affiliations of Keiji Fukuda include United States Department of Agriculture & University of Hong Kong.


Papers
More filters
Journal Article
TL;DR: This report summarizes both actively and passively collected U.S. influenza surveillance data from October 1997 through September 2000, and influenza A(H3N2) viruses predominated; however, influenza B viruses were also identified throughout the United States.
Abstract: Problem/condition In the United States, influenza epidemics occur nearly every winter and are responsible for substantial morbidity and mortality, including an average of approximately 114,000 hospitalizations and 20,000 deaths/year. Reporting period This report summarizes both actively and passively collected U.S. influenza surveillance data from October 1997 through September 2000. Description of system During each October-May in the period covered, CDC received weekly reports from 1) approximately 120 World Health Organization (WHO) and National Respiratory and Enteric Virus Surveillance System (NREVSS) collaborating laboratories in the United States regarding influenza virus isolations; 2) approximately 230, 375, and 430 sentinel physicians during 1997-98, 1998-99, and 1999-00, respectively, regarding their total number of patient visits and the number of visits for influenza-like illness (ILI); and 3) state and territorial epidemiologists regarding estimates of local influenza activity. WHO collaborating laboratories also submitted influenza isolates to CDC for antigenic analysis. Throughout the year, the vital statistics offices in 122 cities reported weekly on deaths related to pneumonia and influenza (PI however, influenza B viruses were also identified throughout the United States. Influenza A(H1N1) viruses were identified rarely. The proportion of respiratory specimens testing positive for influenza peaked at 28% in early February. P&I mortality exceeded the epidemic threshold for 12 consecutive weeks and peaked at 9.7% in early March. Visits for ILI to sentinel physicians exceeded baseline levels for 7 weeks and peaked at 5% in early through mid-February. Forty-three state epidemiologists reported regional or widespread activity at the peak of the season. During the 1999-00 season, influenza A(H3N2) viruses predominated, but influenza A(H1N1) and B viruses also were identified. The proportion of respiratory specimens testing positive for influenza peaked at 31% in mid- to late December. The proportion of deaths attributed to P&I exceeded the epidemic threshold for 13 consecutive weeks and peaked at 11.2% in mid-January. Visits to sentinel physicians for ILI exceeded baseline levels 4 consecutive weeks and peaked at 6% in late December. Forty-four state epidemiologists reported regional or widespread activity at the peak of the season. Interpretation Influenza A(H1N1), A(H3N2), and B viruses circulated during 1997-2000, but influenza A(H3N2) was the most frequently reported virus type/subtype during all three seasons. Influenza A(H3N2) is the virus type/subtype most frequently associated with excess P&I mortality. Influenza activity during all three seasons occurred at moderate to severe levels, and excess P&I mortality was reported during > or = 10 weeks each year. Public health actions CDC conducts active national surveillance during each October-May to detect the emergence and spread of influenza virus variants and to monitor influenza-related morbidity and mortality. Surveillance data are provided weekly throughout the influenza season to public health officials, WHO, and health-care providers and are used to guide vaccine strain selection, prevention and control activities, and patient care. Influenza vaccination is the most effective means for reducing the yearly effect of influenza. Typically, one or two of the influenza vaccine component viruses are updated each year so that vaccine strains will closely match circulating viruses. Surveillance data will continue to be used to select vaccine strains and to monitor the match between vaccine strains and the currently circulating viruses.

63 citations

Journal ArticleDOI
TL;DR: It is shown that the global burdens of AMR estimated in previous studies are not comparable because of their different methodological approaches, assumptions, and data used to generate the estimates.
Abstract: Estimating the global burden of disease from infections caused by pathogens that have acquired antimicrobial resistance (AMR) is essential for resource allocation and to inform AMR action plans at national and global levels. However, the scarcity of robust and accepted methods to determine burden is widely acknowledged. In this Personal View, we discuss the underlying assumptions, characteristics, limitations, and comparability of the approaches used to quantify mortality from AMR bacterial infections. We show that the global burdens of AMR estimated in previous studies are not comparable because of their different methodological approaches, assumptions, and data used to generate the estimates. The analytical frameworks from previous studies are inadequate, and we conclude that a new approach to the estimation of deaths caused by AMR infection is needed. The innovation of a new approach will require the development of mechanisms to systematically collect a clinical dataset of substantial breadth and quality to support the accurate assessment of burden, combined with decision-making and resource allocation for interventions against AMR. We define key actions required and call for innovative thinking and solutions to address these problems.

63 citations

Journal ArticleDOI
TL;DR: Past pandemics are reviewed, identifying measures that will be of value going forward and these will also help in controlling seasonal influenza.
Abstract: Seasonal influenza is an annual occurrence, but it is the threat of pandemics that produces universal concern. Recurring reports of avian influenza viruses severely affecting humans have served as constant reminders of the potential for another pandemic. Review of features of the 1918 influenza pandemic and subsequent ones helps in identifying areas where attention in planning is critical. Key among such issues are likely risk groups and which interventions to employ. Past pandemics have repeatedly underscored, for example, the vulnerability of groups such as pregnant women and taught other lessons valuable for future preparedness. While a fundamental difficulty in planning for the next pandemic remains their unpredictability and infrequency, this uncertainty can be mitigated, in part, by optimizing the handling of the much more predictable occurrence of seasonal influenza. Improvements in antivirals and novel vaccine formulations are critical in lessening the impact of both pandemic and seasonal influenza.

62 citations

Journal ArticleDOI
25 Nov 2004-Vaccine
TL;DR: Thailand's growing economy, well-developed public health infrastructure, and effective national immunization program could enable the country to take more active steps towards influenza control.

60 citations

Journal ArticleDOI
TL;DR: Most respondents said they would not be willing to trade any time from their own lives to prevent uncomplicated influenza in a child of their own, and the time traded did not vary by the age of the hypothetical affected child.
Abstract: Influenza vaccination recently has been recommended for children 6–23 months old, but is not currently recommended for routine use in non-high-risk older children. Information on disease impact, costs, benefits, risks, and community preferences could help guide decisions about which age and risk groups should be vaccinated and strategies for improving coverage. The objective of this study was to measure preferences and willingness-to-pay for changes in health-related quality of life associated with uncomplicated influenza and two rarely-occurring vaccination-related adverse events (anaphylaxis and Guillain-Barre syndrome) in children. We conducted telephone interviews with adult members selected at random from a large New England HMO (n = 112). Respondents were given descriptions of four health outcomes: uncomplicated influenza in a hypothetical 1-year-old child of their own, uncomplicated influenza in a hypothetical 14-year-old child of their own, anaphylaxis following vaccination, and Guillain-Barre syndrome. "Uncomplicated influenza" did not require a physician's visit or hospitalization. Preferences (values) for these health outcomes were measured using time-tradeoff and willingness-to-pay questions. Time-tradeoff questions asked the adult to assume they had a child and to consider how much time from the end of their own life they would be willing to surrender to avoid the health outcome in the child. Respondents said they would give a median of zero days of their lives to prevent an episode of uncomplicated influenza in either their (hypothetical) 1-year-old or 14-year-old, 30 days to prevent an episode of vaccination-related anaphylaxis, and 3 years to prevent a vaccination-related case of Guillain-Barre syndrome. Median willingness-to-pay to prevent uncomplicated influenza in a 1-year-old was $175, uncomplicated influenza in a 14-year-old was $100, anaphylaxis $400, and Guillain-Barre syndrome $4000. The median willingness-to-pay for an influenza vaccination for their children with no risk of anaphylaxis or Guillain-Barre syndrome was $50 and $100, respectively. Most respondents said they would not be willing to trade any time from their own lives to prevent uncomplicated influenza in a child of their own, and the time traded did not vary by the age of the hypothetical affected child. However, adults did indicate a willingness-to-pay to prevent uncomplicated influenza in children, and that they would give more money to prevent the illness in a 1-year-old than in a 14-year-old. Respondents also indicated a willingness to pay a premium for a vaccine without any risk of severe complications.

59 citations


Cited by
More filters
01 Jan 2014
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care.
Abstract: XI. STRATEGIES FOR IMPROVING DIABETES CARE D iabetes is a chronic illness that requires continuing medical care and patient self-management education to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude more extensive evaluation and management of the patient by other specialists as needed. For more detailed information, refer to Bode (Ed.): Medical Management of Type 1 Diabetes (1), Burant (Ed): Medical Management of Type 2 Diabetes (2), and Klingensmith (Ed): Intensive Diabetes Management (3). The recommendations included are diagnostic and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E.

9,618 citations

Journal ArticleDOI
TL;DR: Pediatricians play a critical role in their practices and communities as advocates of breastfeeding and thus should be knowledgeable about the health risks of not breastfeeding, the economic benefits to society of breastfeeding, and the techniques for managing and supporting the breastfeeding dyad.
Abstract: Considerable advances have occurred in recent years in the scientific knowledge of the benefits of breastfeeding, the mechanisms underlying these benefits, and in the clinical management of breastfeeding. This policy statement on breastfeeding replaces the 1997 policy statement of the American Academy of Pediatrics and reflects this newer knowledge and the supporting publications. The benefits of breastfeeding for the infant, the mother, and the community are summarized, and recommendations to guide the pediatrician and other health care professionals in assisting mothers in the initiation and maintenance of breastfeeding for healthy term infants and high-risk infants are presented. The policy statement delineates various ways in which pediatricians can promote, protect, and support breastfeeding not only in their individual practices but also in the hospital, medical school, community, and nation.

5,932 citations

Journal ArticleDOI
TL;DR: This work presents a meta-analyses of the immune system’s response to chronic obstructive pulmonary disease and shows clear patterns of decline in the immune systems of elderly patients with compromised immune systems.
Abstract: Lionel A. Mandell, Richard G. Wunderink, Antonio Anzueto, John G. Bartlett, G. Douglas Campbell, Nathan C. Dean, Scott F. Dowell, Thomas M. File, Jr. Daniel M. Musher, Michael S. Niederman, Antonio Torres, and Cynthia G. Whitney McMaster University Medical School, Hamilton, Ontario, Canada; Northwestern University Feinberg School of Medicine, Chicago, Illinois; University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, and Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas; Johns Hopkins University School of Medicine, Baltimore, Maryland; Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi School of Medicine, Jackson; Division of Pulmonary and Critical Care Medicine, LDS Hospital, and University of Utah, Salt Lake City, Utah; Centers for Disease Control and Prevention, Atlanta, Georgia; Northeastern Ohio Universities College of Medicine, Rootstown, and Summa Health System, Akron, Ohio; State University of New York at Stony Brook, Stony Brook, and Department of Medicine, Winthrop University Hospital, Mineola, New York; and Cap de Servei de Pneumologia i Allergia Respiratoria, Institut Clinic del Torax, Hospital Clinic de Barcelona, Facultat de Medicina, Universitat de Barcelona, Institut d’Investigacions Biomediques August Pi i Sunyer, CIBER CB06/06/0028, Barcelona, Spain.

5,558 citations

Journal Article
TL;DR: This report updates the 2000 recommendations by the Advisory Committee on Immunization Practices on the use of influenza vaccine and antiviral agents with new or updated information regarding the cost-effectiveness of influenza vaccination and the 2001-2002 trivalent vaccine virus strains.
Abstract: This report updates the 2002 recommendations by the Advisory Committee on Immunization Practices (ACIP) on the use of influenza vaccine and antiviral agents (CDC. Prevention and Control of Influenza: Recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 2002;51 [No. RR-3]:1-31). The 2003 recommendations include new or updated information regarding 1) the timing of influenza vaccination by age and risk group; 2) influenza vaccine for children aged 6-23 months; 3) the 2003-2004 trivalent inactivated vaccine virus strains: A/Moscow/10/99 (H3N2)-like, A/New Caledonia/20/99 (H1N1)-like, and B/Hong Kong/330/2001-like antigens (for the A/Moscow/10/99 [H3N2]-like antigen, manufacturers will use the antigenically equivalent A/Panama/2007/99 [H3N2] virus, and for the B/Hong Kong/330/2001-like antigen, manufacturers will use either B/Hong Kong/330/2001 or the antigenically equivalent B/Hong Kong/1434/2002); 4) availability of certain influenza vaccine doses with reduced thimerosal content, including single 0.25 mL-dose syringes; and 5) manufacturers of influenza vaccine for the U.S. market. Although the optimal time to vaccinate against influenza is October and November, vaccination in December and later continues to be strongly recommended A link to this report and other information regarding influenza can be accessed at http://www.cdc.gov/ncidod/diseases/flu/fluvirus.htm.

5,334 citations

Journal ArticleDOI
TL;DR: The new STD treatment guidelines for gonorrhea, chlamydia, bacterial vaginosis, trichomonas, vulvovaginal candidiasis, pelvic inflammatory disease, genital warts, herpes simplex virus infection, syphilis, and scabies are reviewed.
Abstract: The MMWR series of publications is published by the Office of Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, GA 30333.

4,563 citations