scispace - formally typeset
Search or ask a question
Author

Keiji Jindo

Bio: Keiji Jindo is an academic researcher from Wageningen University and Research Centre. The author has contributed to research in topics: Biochar & Compost. The author has an hindex of 14, co-authored 36 publications receiving 1560 citations. Previous affiliations of Keiji Jindo include University of Tokyo & State University of Norte Fluminense.
Topics: Biochar, Compost, Manure, Humus, Soil water

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a selection of organic wastes with different characteristics (e.g., rice husk (RH), rice straw (RS), wood chips of apple tree (Malus pumila) (AB), and oak tree (Quercus serrata) (OB)) were pyrolyzed at different temperatures (400, 500, 600, 700, and 800 °C) in order to optimize the physicochemical properties of biochar as a soil amendment.
Abstract: . Biochar is widely recognized as an efficient tool for carbon sequestration and soil fertility. The understanding of its chemical and physical properties, which are strongly related to the type of the initial material used and pyrolysis conditions, is crucial to identify the most suitable application of biochar in soil. A selection of organic wastes with different characteristics (e.g., rice husk (RH), rice straw (RS), wood chips of apple tree (Malus pumila) (AB), and oak tree (Quercus serrata) (OB)) were pyrolyzed at different temperatures (400, 500, 600, 700, and 800 °C) in order to optimize the physicochemical properties of biochar as a soil amendment. Low-temperature pyrolysis produced high biochar yields; in contrast, high-temperature pyrolysis led to biochars with a high C content, large surface area, and high adsorption characteristics. Biochar obtained at 600 °C leads to a high recalcitrant character, whereas that obtained at 400 °C retains volatile and easily labile compounds. The biochar obtained from rice materials (RH and RS) showed a high yield and unique chemical properties because of the incorporation of silica elements into its chemical structure. The biochar obtained from wood materials (AB and OB) showed high carbon content and a high absorption character.

543 citations

Journal ArticleDOI
TL;DR: The main benefits of the use of biochar in composting are reviewed, with special attention to those related to the process performance, compost microbiology, organic matter degradation and humification, reduction of N losses and greenhouse gas emissions and fate of heavy metals.

279 citations

Journal ArticleDOI
TL;DR: After 12 weeks of composting, factor analysis based on the relative abundances of single PLFAs revealed changes in the microbial community structure which depended on the original organic wastes (CM vs PM).

223 citations

Journal ArticleDOI
TL;DR: Denaturing gradient gel electrophoresis revealed a higher diversity of fungi in biochar-amended compost, suggesting a change in microbial composition compared to the unamENDED compost.

219 citations

Journal ArticleDOI
TL;DR: In this paper, the direct interaction between humic acid and root growth, depending on different origin of organic materials, was studied. And the results showed that the root growth was affected by humic acids.
Abstract: Background and aims Besides general effect of organic residues on soil quality and plant crop, hormonal direct effect on plant growth by extracted humic acids of organic materials is interesting and profitable theme. In the present work, we studied on direct interaction between humic acid and root growth, depending on different origin of organic materials.

169 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The influence of spray programs on the fauna of apple orchards in Nova Scotia XIV and its relation to the natural control of the oyster shell scale Lepidosaphes ulmi L.
Abstract: B6nassy, C., 1955. R6marques sur deux Aphelinid6s: Aphelinus mytilaspidis Le Baron et Aphytis proclia Walker. Annls l~piphyt. 6: 11-17. Lord, F. T. & MacPhee, A. W., 1953. The influence of spray programs on the fauna of apple orchards in Nova Scotia II. Oyster shell scale. Can. Ent. 79: 196-209. Pickett, A. D., 1946. A progress report on long term spray programs. Rep. Nova Scotia Fruit Grow. Ass. 83 : 27-31. Pickett, A. D., 1967. The influence of spray programs on the fauna of apple orchards in Nova Scotia XIV. Can. Ent. 97: 816-821. Tothill, J. D., 1918. The predacious mite Hemisarcoptes malus Shimer and its relation to the natural control of the oyster shell scale Lepidosaphes ulmi L. Agric. Gaz. Can. 5 : 234-239.

1,506 citations

Journal ArticleDOI
TL;DR: The legal and regulatory status of biostimulants are described, with a focus on the EU and the US, and the drivers, opportunities and challenges of their market development are outlined.

1,340 citations

Journal ArticleDOI
TL;DR: There is growing scientific evidence supporting the use of biostimulants as agricultural inputs on diverse plant species, such as increased root growth, enhanced nutrient uptake, and stress tolerance.
Abstract: Plant biostimulants are diverse substances and microorganisms used to enhance plant growth. The global market for biostimulants is projected to increase 12 % per year and reach over $2,200 million by 2018. Despite the growing use of biostimulants in agriculture, many in the scientific community consider biostimulants to be lacking peer-reviewed scientific evaluation. This article describes the emerging definitions of biostimulants and reviews the literature on five categories of biostimulants: i. microbial inoculants, ii. humic acids, iii. fulvic acids, iv. protein hydrolysates and amino acids, and v. seaweed extracts. The large number of publications cited for each category of biostimulants demonstrates that there is growing scientific evidence supporting the use of biostimulants as agricultural inputs on diverse plant species. The cited literature also reveals some commonalities in plant responses to different biostimulants, such as increased root growth, enhanced nutrient uptake, and stress tolerance.

1,305 citations

Journal ArticleDOI
TL;DR: The first quantitative review of the effects of biochar on multiple ecosystem functions and the central tendencies suggest that biochar holds promise in being a win-win-win solution to energy, carbon storage, and ecosystem function as mentioned in this paper.
Abstract: Biochar is a carbon-rich coproduct resulting from pyrolyzing biomass. When applied to the soil it resists decomposition, effectively sequestering the applied carbon and mitigating anthropogenic CO2 emissions. Other promoted benefits of biochar application to soil include increased plant productivity and reduced nutrient leaching. However, the effects of biochar are variable and it remains unclear if recent enthusiasm can be justified. We evaluate ecosystem responses to biochar application with a meta-analysis of 371 independent studies culled from 114 published manuscripts. We find that despite variability introduced by soil and climate, the addition of biochar to soils resulted, on average, in increased aboveground productivity, crop yield, soil microbial biomass, rhizobia nodulation, plant K tissue concentration, soil phosphorus (P), soil potassium (K), total soil nitrogen (N), and total soil carbon (C) compared with control conditions. Soil pH also tended to increase, becoming less acidic, following the addition of biochar. Variables that showed no significant mean response to biochar included belowground productivity, the ratio of aboveground : belowground biomass, mycorrhizal colonization of roots, plant tissue N, and soil P concentration, and soil inorganic N. Additional analyses found no detectable relationship between the amount of biochar added and aboveground productivity. Our results provide the first quantitative review of the effects of biochar on multiple ecosystem functions and the central tendencies suggest that biochar holds promise in being a win-win-win solution to energy, carbon storage, and ecosystem function. However, biochar's impacts on a fourth component, the downstream nontarget environments, remain unknown and present a critical research gap.

1,245 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the preparation, characterization, modification, and especially environmental application of biochar, based on more than 200 papers published in recent 10 year, to provide an overview of Biochar with a particular on its environmental application.

1,017 citations