scispace - formally typeset
Search or ask a question
Author

Keishi Osakabe

Bio: Keishi Osakabe is an academic researcher from University of Tokushima. The author has contributed to research in topics: Genome editing & CRISPR. The author has an hindex of 33, co-authored 84 publications receiving 4552 citations. Previous affiliations of Keishi Osakabe include Tokyo University of Agriculture and Technology & Michigan Technological University.
Topics: Genome editing, CRISPR, Cas9, Gene, Genome


Papers
More filters
Journal ArticleDOI
TL;DR: The systems that regulate plant adaptation to water stress through a sophisticated regulatory network are the subject of the current review and molecular mechanisms that plants use to increase stress tolerance, maintain appropriate hormone homeostasis and responses and prevent excess light damage are discussed.
Abstract: Water stress adversely impacts many aspects of the physiology of plants, especially photosynthetic capacity. If the stress is prolonged, plant growth and productivity are severely diminished. Plants have evolved complex physiological and biochemical adaptations to adjust and adapt to a variety of environmental stresses. The molecular and physiological mechanisms associated with water-stress tolerance and water-use efficiency have been extensively studied. The systems that regulate plant adaptation to water stress through a sophisticated regulatory network are the subject of the current review. Molecular mechanisms that plants use to increase stress tolerance, maintain appropriate hormone homeostasis and responses and prevent excess light damage, are also discussed. An understanding of how these systems are regulated and ameliorate the impact of water stress on plant productivity will provide the information needed to improve plant stress tolerance using biotechnology, while maintaining the yield and quality of crops.

1,083 citations

Journal ArticleDOI
TL;DR: Cloned cDNAs encoding a cytochrome P450 monooxygenase and a caffeate O-methyltransferase from sweetgum and COMT converted coniferyl aldehyde to sinapyl alde Hyde, suggesting a CAld5H/COMT-mediated pathway from guaiacyl to syringyl monolignol biosynthesis via conifldehyde that contrasts with the generally accepted route to Sinapate via ferulate.
Abstract: A central question in lignin biosynthesis is how guaiacyl intermediates are hydroxylated and methylated to the syringyl monolignol in angiosperms. To address this question, we cloned cDNAs encoding a cytochrome P450 monooxygenase (LsM88) and a caffeate O-methyltransferase (COMT) from sweetgum (Liquidambar styraciflua) xylem. Mass spectrometry-based functional analysis of LsM88 in yeast identified it as coniferyl aldehyde 5-hydroxylase (CAld5H). COMT expressed in Escherichia coli methylated 5-hydroxyconiferyl aldehyde to sinapyl aldehyde. Together, CAld5H and COMT converted coniferyl aldehyde to sinapyl aldehyde, suggesting a CAld5H/COMT-mediated pathway from guaiacyl to syringyl monolignol biosynthesis via coniferyl aldehyde that contrasts with the generally accepted route to sinapate via ferulate. Although the CAld5H/COMT enzyme system can mediate the biosynthesis of syringyl monolignol intermediates through either route, kcat/Km of CAld5H for coniferyl aldehyde was ≈140 times greater than that for ferulate. More significantly, when coniferyl aldehyde and ferulate were present together, coniferyl aldehyde was a noncompetitive inhibitor (Ki = 0.59 μM) of ferulate 5-hydroxylation, thereby eliminating the entire reaction sequence from ferulate to sinapate. In contrast, ferulate had no effect on coniferyl aldehyde 5-hydroxylation. 5-Hydroxylation also could not be detected for feruloyl-CoA or coniferyl alcohol. Therefore, in the presence of coniferyl aldehyde, ferulate 5-hydroxylation does not occur, and the syringyl monolignol can be synthesized only from coniferyl aldehyde. Endogenous coniferyl, 5-hydroxyconiferyl, and sinapyl aldehydes were detected, consistent with in vivo operation of the CAld5H/COMT pathway from coniferyl to sinapyl aldehydes via 5-hydroxyconiferyl aldehyde for syringyl monolignol biosynthesis.

311 citations

Journal ArticleDOI
TL;DR: Two functionally and structurally distinct 4CL genes are discovered that are differentially expressed in aspen (Populus tremuloides) that reveal the association of Pt4CL1 with the biosynthesis of guaiacyl-syringyl lignin and the involvement of Pt 4CL2 with other phenylpropanoid formation.
Abstract: 4-Coumarate:CoA ligases (4CLs, EC 6.2.1.12) are a group of enzymes necessary for maintaining a continuous metabolic flux for the biosynthesis of plant phenylpropanoids, such as lignin and flavonoids, that are essential to the survival of plants. So far, various biochemical and molecular studies of plant 4CLs seem to suggest that 4CL isoforms in plants are functionally indistinguishable in mediating the biosynthesis of these phenolics. However, we have discovered two functionally and structurally distinct 4CL genes, Pt4CL1 and Pt4CL2 (63% protein sequence identity), that are differentially expressed in aspen (Populus tremuloides). The Escherichia coli-expressed and purified Pt4CL1 and Pt4CL2 proteins exhibited highly divergent substrate preference as well as specificity that reveal the association of Pt4CL1 with the biosynthesis of guaiacyl-syringyl lignin and the involvement of Pt4CL2 with other phenylpropanoid formation. Northern hybridization analysis demonstrated that Pt4CL1 mRNA is specifically expressed in lignifying xylem tissues and Pt4CL2 mRNA is specifically expressed in epidermal layers in the stem and the leaf, consistent with the promoter activities of Pt4CL1 and Pt4CL2 genes based on the heterologous promoter-beta-glucouronidase fusion analysis. Thus, the expression of Pt4CL1 and Pt4CL2 genes is compartmentalized to regulate the differential formation of phenylpropanoids that confer different physiological functions in aspen; Pt4CL1 is devoted to lignin biosynthesis in developing xylem tissues, whereas Pt4CL2 is involved in the biosynthesis of other phenolics, such as flavonoids, in epidermal cells.

263 citations

Journal ArticleDOI
TL;DR: These data demonstrate that an approach using ZFNs can be used for the efficient production of mutant plants for precision reverse genetics, and lack of AtKu80, which plays a role in end-protection of dsDNA breaks, increased error-prone rejoining frequency by 2.6-fold.
Abstract: Site-directed mutagenesis in higher plants remains a significant technical challenge for basic research and molecular breeding. Here, we demonstrate targeted-gene inactivation for an endogenous gene in Arabidopsis using zinc finger nucleases (ZFNs). Engineered ZFNs for a stress-response regulator, the ABA-INSENSITIVE4 (ABI4) gene, cleaved their recognition sequences specifically in vitro, and ZFN genes driven by a heat-shock promoter were introduced into the Arabidopsis genome. After heat-shock induction, gene mutations with deletion and substitution in the ABI4 gene generated via ZFN-mediated cleavage were observed in somatic cells at frequencies as high as 3%. The homozygote mutant line zfn_abi4-1–1 for ABI4 exhibited the expected mutant phenotypes, i.e., ABA and glucose insensitivity. In addition, ZFN-mediated mutagenesis was applied to the DNA repair-deficient mutant plant, atku80. We found that lack of AtKu80, which plays a role in end-protection of dsDNA breaks, increased error-prone rejoining frequency by 2.6-fold, with increased end-degradation. These data demonstrate that an approach using ZFNs can be used for the efficient production of mutant plants for precision reverse genetics.

250 citations

Journal ArticleDOI
TL;DR: Using genome editing mediated by a truncated gRNA (tru-gRNA)/Cas9 combination, new alleles for OST2, a proton pump in Arabidopsis are generated, showing that high expression in the germ line can produce bi-allelic mutations.
Abstract: Genome editing using the CRISPR/Cas9 system can be used to modify plant genomes, however, improvements in specificity and applicability are still needed in order for the editing technique to be useful in various plant species. Here, using genome editing mediated by a truncated gRNA (tru-gRNA)/Cas9 combination, we generated new alleles for OST2, a proton pump in Arabidopsis, with no off-target effects. By following expression of Cas9 and the tru-gRNAs, newly generated mutations in CRIPSR/Cas9 transgenic plants were detected with high average mutation rates of up to 32.8% and no off-target effects using constitutive promoter. Reducing nuclear localization signals in Cas9 decreased the mutation rate. In contrast, tru-gRNA Cas9 cassettes driven by meristematic- and reproductive-tissue-specific promoters increased the heritable mutation rate in Arabidopsis, showing that high expression in the germ line can produce bi-allelic mutations. Finally, the new mutant alleles obtained for OST2 exhibited altered stomatal closing in response to environmental conditions. These results suggest further applications in molecular breeding to improve plant function using optimized plant CRISPR/Cas9 systems.

239 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Flavonoids are plant pigments that are synthesised from phenylalanine, generally display marvelous colors known from flower petals, mostly emit brilliant fluorescence when they are excited by UV light, and are ubiquitous to green plant cells.

2,424 citations

01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

Journal ArticleDOI
TL;DR: A broad range of outcomes has resulted from the application of the same core technology: targeted genome cleavage by engineered, sequence-specific zinc finger nucleases followed by gene modification during subsequent repair.
Abstract: Reverse genetics in model organisms such as Drosophila melanogaster, Arabidopsis thaliana, zebrafish and rats, efficient genome engineering in human embryonic stem and induced pluripotent stem cells, targeted integration in crop plants, and HIV resistance in immune cells - this broad range of outcomes has resulted from the application of the same core technology: targeted genome cleavage by engineered, sequence-specific zinc finger nucleases followed by gene modification during subsequent repair. Such 'genome editing' is now established in human cells and a number of model organisms, thus opening the door to a range of new experimental and therapeutic possibilities.

2,074 citations

19 Nov 2012

1,653 citations

Journal ArticleDOI
TL;DR: This review provides a “beginning‐to‐end” analysis of the recent advances reported in lignin valorisation, with particular emphasis on the improved understanding of lign in's biosynthesis and structure.
Abstract: Lignin is an abundant biopolymer with a high carbon content and high aromaticity. Despite its potential as a raw material for the fuel and chemical industries, lignin remains the most poorly utilised of the lignocellulosic biopolymers. Effective valorisation of lignin requires careful fine-tuning of multiple "upstream" (i.e., lignin bioengineering, lignin isolation and "early-stage catalytic conversion of lignin") and "downstream" (i.e., lignin depolymerisation and upgrading) process stages, demanding input and understanding from a broad array of scientific disciplines. This review provides a "beginning-to-end" analysis of the recent advances reported in lignin valorisation. Particular emphasis is placed on the improved understanding of lignin's biosynthesis and structure, differences in structure and chemical bonding between native and technical lignins, emerging catalytic valorisation strategies, and the relationships between lignin structure and catalyst performance.

1,390 citations