scispace - formally typeset
Search or ask a question
Author

Keisuke Hirai

Bio: Keisuke Hirai is an academic researcher from Takeda Pharmaceutical Company. The author has contributed to research in topics: Oxidative stress & Melatonin. The author has an hindex of 27, co-authored 68 publications receiving 7091 citations. Previous affiliations of Keisuke Hirai include Case Western Reserve University & Asahikawa Medical University.


Papers
More filters
Journal ArticleDOI
TL;DR: The observations indicate that increased oxidative damage is an early event in AD that decreases with disease progression and lesion formation and suggest that AD is associated with compensatory changes that reduce damage from reactive oxygen.
Abstract: Recently, we demonstrated a significant increase of an oxidized nucleoside derived from RNA, 8-hydroxyguanosine (8OHG), and an oxidized amino acid, nitrotyrosine in vulnerable neurons of patients with Alzheimer disease (AD). To determine whether oxidative damage is an early- or end-stage event in the process of neurodegeneration in AD, we investigated the relationship between neuronal 8OHG and nitrotyrosine and histological and clinical variables, i.e. amyloid-beta (A beta) plaques and neurofibrillary tangles (NFT), as well as duration of dementia and apolipoprotein E (ApoE) genotype. Our findings show that oxidative damage is quantitatively greatest early in the disease and reduces with disease progression. Surprisingly, we found that increases in A beta deposition are associated with decreased oxidative damage. These relationships are more significant in ApoE epsilon4 carriers. Moreover, neurons with NFT show a 40%-56% decrease in relative 8OHG levels compared with neurons free of NFT. Our observations indicate that increased oxidative damage is an early event in AD that decreases with disease progression and lesion formation. These findings suggest that AD is associated with compensatory changes that reduce damage from reactive oxygen.

1,799 citations

Journal ArticleDOI
TL;DR: Morphometric analysis showed that mitochondria are significantly reduced in Alzheimer's disease, and the relationship shown here between the site and extent of mitochondrial abnormalities and oxidative damage suggests an intimate and early association between these features in dementia.
Abstract: The finding that oxidative damage, including that to nucleic acids, in Alzheimer's disease is primarily limited to the cytoplasm of susceptible neuronal populations suggests that mitochondrial abnormalities might be part of the spectrum of chronic oxidative stress of Alzheimer's disease. In this study, we used in situ hybridization to mitochondrial DNA (mtDNA), immunocytochemistry of cytochrome oxidase, and morphometry of electron micrographs of biopsy specimens to determine whether there are mitochondrial abnormalities in Alzheimer's disease and their relationship to oxidative damage marked by 8-hydroxyguanosine and nitrotyrosine. We found that the same neurons showing increased oxidative damage in Alzheimer's disease have a striking and significant increase in mtDNA and cytochrome oxidase. Surprisingly, much of the mtDNA and cytochrome oxidase is found in the neuronal cytoplasm and in the case of mtDNA, the vacuoles associated with lipofuscin. Morphometric analysis showed that mitochondria are significantly reduced in Alzheimer's disease. The relationship shown here between the site and extent of mitochondrial abnormalities and oxidative damage suggests an intimate and early association between these features in Alzheimer's disease.

1,270 citations

Journal ArticleDOI
TL;DR: Surprisingly, the oxidized nucleoside was associated predominantly with RNA because immunoreaction was diminished greatly by preincubation in RNase but only slightly by DNase, the first evidence of increased RNA oxidation restricted to vulnerable neurons in AD.
Abstract: In this study we used an in situ approach to identify the oxidized nucleosides 8-hydroxydeoxyguanosine (8OHdG) and 8-hydroxyguanosine (8OHG), markers of oxidative damage to DNA and RNA, respectively, in cases of Alzheimer’s disease (AD). The goal was to determine whether nuclear and mitochondrial DNA as well as RNA is damaged in AD. Immunoreactivity with monoclonal antibodies 1F7 or 15A3 recognizing both 8OHdG and 8OHG was prominent in the cytoplasm and to a lesser extent in the nucleolus and nuclear envelope in neurons within the hippocampus, subiculum, and entorhinal cortex as well as frontal, temporal, and occipital neocortex in cases of AD, whereas similar structures were immunolabeled only faintly in controls. Relative density measurement showed that there was a significant increase ( p < 0.0001) in 8OHdG and 8OHG immunoreactivity with 1F7 in cases of AD ( n = 22) as compared with senile ( n = 13), presenile ( n = 10), or young controls ( n = 4). Surprisingly, the oxidized nucleoside was associated predominantly with RNA because immunoreaction was diminished greatly by preincubation in RNase but only slightly by DNase. This is the first evidence of increased RNA oxidation restricted to vulnerable neurons in AD. The subcellular localization of damaged RNA showing cytoplasmic predominance is consistent with the hypothesis that mitochondria may be a major source of reactive oxygen species that cause oxidative damage in AD.

719 citations

Journal ArticleDOI
TL;DR: Evidence that amyloid‐β and oxidative damage are inextricably linked in vivo is provided, and the use of transgenic animals for the development of antioxidant therapeutic strategies is supported.
Abstract: Increased awareness for a role of oxidative stress in the pathogenesis of Alzheimer's disease has highlighted the issue of whether oxidative damage is a fundamental step in the pathogenesis or instead results from disease-associated pathology. In vitro experiments support both possibilities: Oxidative stress increases amyloid-beta production, and, conversely, amyloid-beta increases oxidative damage. To address the relationship between amyloid-beta and oxidative stress in vivo, we examined, using an array of oxidative markers, transgenic mice that overexpress amyloid-beta precursor protein and, as in Alzheimer's disease, develop characteristic amyloid-beta deposits within the brain parenchyma. Transgenic animals show the same type of oxidative damage that is found in Alzheimer's disease, and it is important that this damage directly correlates with the presence of amyloid-beta deposits. The significance of these studies is twofold. First, they provide evidence that amyloid-beta and oxidative damage are inextricably linked in vivo. Second, they support the use of transgenic animals for the development of antioxidant therapeutic strategies.

551 citations

Journal ArticleDOI
TL;DR: The causes and consequences of mitochondrial disturbances in Alzheimer's disease as well as how this information might impact on therapeutic approaches to this disease are reviewed.
Abstract: Abnormalities in mitochondrial function relate to the spectrum of pathological changes seen in Alzheimer's disease Here we review the causes and consequences of mitochondrial disturbances in Alzheimer's disease as well as how this information might impact on therapeutic approaches to this disease © 2002 Wiley-Liss, Inc

340 citations


Cited by
More filters
Journal ArticleDOI
19 Oct 2006-Nature
TL;DR: Treatments targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria hold great promise in ageing-related neurodegenerative diseases.
Abstract: Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. Mitochondria are critical regulators of cell death, a key feature of neurodegeneration. Mutations in mitochondrial DNA and oxidative stress both contribute to ageing, which is the greatest risk factor for neurodegenerative diseases. In all major examples of these diseases there is strong evidence that mitochondrial dysfunction occurs early and acts causally in disease pathogenesis. Moreover, an impressive number of disease-specific proteins interact with mitochondria. Thus, therapies targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria, hold great promise.

5,368 citations

Journal ArticleDOI
TL;DR: By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder.

4,319 citations

Journal ArticleDOI
TL;DR: The mitochondria provide a direct link between the authors' environment and their genes and the mtDNA variants that permitted their forbears to energetically adapt to their ancestral homes are influencing their health today.
Abstract: Life is the interplay between structure and energy, yet the role of energy deficiency in human disease has been poorly explored by modern medicine. Since the mitochondria use oxidative phosphorylation (OXPHOS) to convert dietary calories into usable energy, generating reactive oxygen species (ROS) as a toxic by-product, I hypothesize that mitochondrial dysfunction plays a central role in a wide range of age-related disorders and various forms of cancer. Because mitochondrial DNA (mtDNA) is present in thousands of copies per cell and encodes essential genes for energy production, I propose that the delayed-onset and progressive course of the agerelated diseases results from the accumulation of somatic mutations in the mtDNAs of post-mitotic tissues. The tissue-specific manifestations of these diseases may result from the varying energetic roles and needs of the different tissues. The variation in the individual and regional predisposition to degenerative diseases and cancer may result from the interaction of modern dietary caloric intake and ancient mitochondrial genetic polymorphisms. Therefore the mitochondria provide a direct link between our environment and our genes and the mtDNA variants that permitted our forbears to energetically adapt to their ancestral homes are influencing our health today.

3,016 citations

Journal ArticleDOI
TL;DR: Postmortem studies have enabled the staging of the progression of both amyloid and tangle pathologies, and the development of diagnostic criteria that are now used worldwide, and these cross-sectional neuropathological data have been largely validated by longitudinal in vivo studies using modern imaging biomarkers such as amyloids PET and volumetric MRI.
Abstract: The neuropathological hallmarks of Alzheimer disease (AD) include “positive” lesions such as amyloid plaques and cerebral amyloid angiopathy, neurofibrillary tangles, and glial responses, and “negative” lesions such as neuronal and synaptic loss. Despite their inherently cross-sectional nature, postmortem studies have enabled the staging of the progression of both amyloid and tangle pathologies, and, consequently, the development of diagnostic criteria that are now used worldwide. In addition, clinicopathological correlation studies have been crucial to generate hypotheses about the pathophysiology of the disease, by establishing that there is a continuum between “normal” aging and AD dementia, and that the amyloid plaque build-up occurs primarily before the onset of cognitive deficits, while neurofibrillary tangles, neuron loss, and particularly synaptic loss, parallel the progression of cognitive decline. Importantly, these cross-sectional neuropathological data have been largely validated by longitudinal in vivo studies using modern imaging biomarkers such as amyloid PET and volumetric MRI.

2,449 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism is presented, encompassing the pathways and regulation of Cr biosynthesis and degradation, species and tissue distribution of the enzymes and metabolites involved, and of the inherent implications for physiology and human pathology.
Abstract: The goal of this review is to present a comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism, encompassing the pathways and regulation of Cr biosynthesis an...

2,332 citations