scispace - formally typeset
Search or ask a question
Author

Keith A. Nelson

Other affiliations: Harvard University, Philips, Stanford University  ...read more
Bio: Keith A. Nelson is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Terahertz radiation & Femtosecond. The author has an hindex of 85, co-authored 727 publications receiving 26755 citations. Previous affiliations of Keith A. Nelson include Harvard University & Philips.


Papers
More filters
Journal ArticleDOI
19 Jul 2012-Nature
TL;DR: The observation of an insulator–metal transition in vanadium dioxide induced by a terahertz electric field is reported, demonstrating that integration of metamaterials with complex matter is a viable pathway to realize functional nonlinear electromagnetic composites.
Abstract: An innovative technique uses ultrafast below-bandgap electric-field pulses to induce and probe an insulator–metal transition in an oxide thin film on which a metamaterial structure has been deposited. The transition from insulating to metallic behaviour and the microscopic interactions that accompany the transition are important phenomena in electronic materials. Until now it has not been possible to observe the transition directly in a time-resolved manner. Here, Richard Averitt and colleagues use ultrafast terahertz pulses to induce a phase transition in a prototypical insulator–metal transition material (vanadium dioxide) on which a metamaterial structure has been deposited. The metamaterial serves to amplify the local terahertz field, as well as to detect macroscopic changes in vanadium dioxide. Through direct, time-resolved observations, the authors establish a detailed microscopic picture of the structural and electronic changes underlying the insulator–metal transition. They conclude that their technique is versatile and could even be used to study phase transitions in superconductors. Electron–electron interactions can render an otherwise conducting material insulating1, with the insulator–metal phase transition in correlated-electron materials being the canonical macroscopic manifestation of the competition between charge-carrier itinerancy and localization. The transition can arise from underlying microscopic interactions among the charge, lattice, orbital and spin degrees of freedom, the complexity of which leads to multiple phase-transition pathways. For example, in many transition metal oxides, the insulator–metal transition has been achieved with external stimuli, including temperature, light, electric field, mechanical strain or magnetic field2,3,4,5,6,7. Vanadium dioxide is particularly intriguing because both the lattice and on-site Coulomb repulsion contribute to the insulator-to-metal transition at 340 K (ref. 8). Thus, although the precise microscopic origin of the phase transition remains elusive, vanadium dioxide serves as a testbed for correlated-electron phase-transition dynamics. Here we report the observation of an insulator–metal transition in vanadium dioxide induced by a terahertz electric field. This is achieved using metamaterial-enhanced picosecond, high-field terahertz pulses to reduce the Coulomb-induced potential barrier for carrier transport9. A nonlinear metamaterial response is observed through the phase transition, demonstrating that high-field terahertz pulses provide alternative pathways to induce collective electronic and structural rearrangements. The metamaterial resonators play a dual role, providing sub-wavelength field enhancement that locally drives the nonlinear response, and global sensitivity to the local changes, thereby enabling macroscopic observation of the dynamics10,11. This methodology provides a powerful platform to investigate low-energy dynamics in condensed matter and, further, demonstrates that integration of metamaterials with complex matter is a viable pathway to realize functional nonlinear electromagnetic composites.

1,023 citations

Journal ArticleDOI
TL;DR: In this article, the electric and magnetic fields of intense terahertz transients can be used to control matter and light, and the fundamental interaction mechanisms of terrahertz radiation with matter are discussed.
Abstract: This article provides an overview and illustrative examples of how the electric and magnetic fields of intense terahertz transients can be used to resonantly, and even nonresonantly, control matter and light. It discusses the fundamental interaction mechanisms of intense terahertz radiation with matter.

848 citations

Journal ArticleDOI
TL;DR: In this article, a femtosecond optical pump pulse from a 10Hz Ti:sapphire laser to match the phonon-polariton phase velocity to the group velocity of the pump pulses in a lithium niobate crystal was achieved.
Abstract: Generation of near single-cycle pulses centered at 0.5THz frequency with up to 10μJ energy, 100μW average power, and 5.0MW peak power was demonstrated by tilting the intensity front of a femtosecond optical pump pulse from a 10Hz Ti:sapphire laser to match the phonon-polariton phase velocity to the group velocity of the pump pulses in a lithium niobate crystal. Terahertz pulse intensity as high as 10MW∕cm2 was achieved. The photon conversion efficiency was 45% and the calculated peak electric field strength at the focus of an off-axis parabolic mirror was 250kV∕cm.

582 citations

Journal ArticleDOI
TL;DR: In this article, the principles and most recent results of high-power THz generation through optical rectification using a tilted optical pulse front are described and applications in nonlinear THz spectroscopy and THz coherent control are discussed.
Abstract: The principles and most-recent results of high-power THz generation through optical rectification using a tilted optical pulse front are described. Single-cycle THz pulses of multimicrojoule energies are generated at kHz repetition rates, and average THz power levels exceeding 1 mW can be generated at kHz-MHz repetition rates. Applications in nonlinear THz spectroscopy and THz coherent control are discussed.

516 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that "impulsive" stimulated Raman scattering (ISRS) should occur, with no laser intensity threshold, when a sufficiently short laser pulse passes through many types of matter.
Abstract: It is shown that ‘‘impulsive’’ stimulated Raman scattering (ISRS) should occur, with no laser intensity threshold, when a sufficiently short laser pulse passes through many types of matter. ISRS excitation of coherent optic phonons, molecular vibrations, and other excitations (including rotational, electronic, and spin) may play important roles in femtosecond pulse interactions with molecules, crystals, glasses (including optical fibers), semiconductors, and metals. Spectroscopic applications of ISRS, including time‐resolved spectroscopy of vibrationally distorted molecules and crystals, are discussed.

498 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations