scispace - formally typeset
Search or ask a question
Author

Keith Bradley

Bio: Keith Bradley is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Nanostructure & Nanotube. The author has an hindex of 23, co-authored 36 publications receiving 5883 citations. Previous affiliations of Keith Bradley include University of California, Los Angeles & Lawrence Berkeley National Laboratory.

Papers
More filters
Journal ArticleDOI
10 Mar 2000-Science
TL;DR: The results, although demonstrating that nanotubes could find use as sensitive chemical gas sensors, likewise indicate that many supposedly intrinsic properties measured on as-prepared nanotube may be severely compromised by extrinsic air exposure effects.
Abstract: The electronic properties of single-walled carbon nanotubes are shown here to be extremely sensitive to the chemical environment. Exposure to air or oxygen dramatically influences the nanotubes' electrical resistance, thermoelectric power, and local density of states, as determined by transport measurements and scanning tunneling spectroscopy. These electronic parameters can be reversibly "tuned" by surprisingly small concentrations of adsorbed gases, and an apparently semiconducting nanotube can be converted into an apparent metal through such exposure. These results, although demonstrating that nanotubes could find use as sensitive chemical gas sensors, likewise indicate that many supposedly intrinsic properties measured on as-prepared nanotubes may be severely compromised by extrinsic air exposure effects.

2,737 citations

Journal ArticleDOI
TL;DR: Nonspecific binding was observed in devices without the polymer coating, while no binding was found for polymer-coated but not biotinylated devices, andBiotin-streptavidin binding has been detected by changes in the device characteristic.
Abstract: We have used nanoscale field effect transistor devices with carbon nanotubes as the conducting channel to detect protein binding A PEI/PEG polymer coating layer has been employed to avoid nonspecific binding, with attachment of biotin to the layer for specific molecular recognition Biotin-streptavidin binding has been detected by changes in the device characteristic Nonspecific binding was observed in devices without the polymer coating, while no binding was found for polymer-coated but not biotinylated devices Streptavidin, in which the biotin-binding sites were blocked by reaction with excess biotin, produced essentially no change in device characteristic of the biotinylated polymer-coated devices

771 citations

Journal ArticleDOI
TL;DR: In this paper, the polymer-supported networks can be bent through at least 60° angles without changing their electronic properties, and they can be used to bend the transistors of a nanotube network.
Abstract: Nanotube network transistors have been transferred to polymer supports. The polymer-supported networks can be bent through at least 60° angles without changing their electronic properties. They ope...

394 citations

Journal ArticleDOI
TL;DR: In this article, a transistor device with carbon nanotubes as the conducting channel was used to explore the interaction between the nanotube surface and streptavidin, both in dry and in buffer environments.
Abstract: We have used transistor devices with carbon nanotubes as the conducting channel to explore the interaction between the nanotube surface and streptavidin, both in dry and in buffer environments. We find charge transfer between the protein and the nanotubes in both cases. Comparison with simpler molecules allows the estimation of the transferred charge. We argue that this effect can be understood as being due to the interaction between the -NH2 groups of the protein and the aromatic surface.

270 citations

Journal ArticleDOI
TL;DR: The thermoelectric power (TEP) of single-walled carbon nanotubes (SWNTs) is extremely sensitive to gas exposure history, leading to apparently "variable" TEP for a given sample at a given temperature.
Abstract: The thermoelectric power (TEP) of single-walled carbon nanotubes (SWNTs) is extremely sensitive to gas exposure history. Samples exposed to air or oxygen have an always positive TEP, suggestive of holelike carriers. However, at fixed temperature the TEP crosses zero and becomes progressively more negative as the SWNTs are stripped of oxygen. The time constant for oxygen adsorption/desorption is strongly temperature dependent and ranges from seconds to many days, leading to apparently "variable" TEP for a given sample at a given temperature. The saturated TEP can be accounted for within a model of strong oxygen doping of the semiconducting nanotubes.

215 citations


Cited by
More filters
Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that micrometre-size sensors made from graphene are capable of detecting individual events when a gas molecule attaches to or detaches from graphene's surface.
Abstract: The ultimate aim of any detection method is to achieve such a level of sensitivity that individual quanta of a measured entity can be resolved. In the case of chemical sensors, the quantum is one atom or molecule. Such resolution has so far been beyond the reach of any detection technique, including solid-state gas sensors hailed for their exceptional sensitivity1, 2, 3, 4. The fundamental reason limiting the resolution of such sensors is fluctuations due to thermal motion of charges and defects5, which lead to intrinsic noise exceeding the sought-after signal from individual molecules, usually by many orders of magnitude. Here, we show that micrometre-size sensors made from graphene are capable of detecting individual events when a gas molecule attaches to or detaches from graphene's surface. The adsorbed molecules change the local carrier concentration in graphene one by one electron, which leads to step-like changes in resistance. The achieved sensitivity is due to the fact that graphene is an exceptionally low-noise material electronically, which makes it a promising candidate not only for chemical detectors but also for other applications where local probes sensitive to external charge, magnetic field or mechanical strain are required.

7,318 citations

Journal ArticleDOI
TL;DR: Department of Materials Science, University of Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Triesteadays.
Abstract: Department of Materials Science, University of Patras, 26504 Rio Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Avenue, 116 35 Athens, Greece, Institut de Biologie Moleculaire et Cellulaire, UPR9021 CNRS, Immunologie et Chimie Therapeutiques, 67084 Strasbourg, France, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Trieste, Italy

3,886 citations

Journal ArticleDOI
15 Feb 2010-ACS Nano
TL;DR: The resultant N-graphene was demonstrated to act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction via a four-electron pathway in alkaline fuel cells.
Abstract: Nitrogen-doped graphene (N-graphene) was synthesized by chemical vapor deposition of methane in the presence of ammonia. The resultant N-graphene was demonstrated to act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction via a four-electron pathway in alkaline fuel cells. To the best of our knowledge, this is the first report on the use of graphene and its derivatives as metal-free catalysts for oxygen reduction. The important role of N-doping to oxygen reduction reaction (ORR) can be applied to various carbon materials for the development of other metal-free efficient ORR catalysts for fuel cell applications, even new catalytic materials for applications beyond fuel cells.

3,604 citations

Journal ArticleDOI
TL;DR: The emerging ability to control the patterns of matter on the nanometer length scale can be expected to lead to entirely new types of biological sensors capable of sensing at the single-molecule level in living cells, and capable of parallel integration for detection of multiple signals.
Abstract: In the coming decade, the ability to sense and detect the state of biological systems and living organisms optically, electrically and magnetically will be radically transformed by developments in materials physics and chemistry. The emerging ability to control the patterns of matter on the nanometer length scale can be expected to lead to entirely new types of biological sensors. These new systems will be capable of sensing at the single-molecule level in living cells, and capable of parallel integration for detection of multiple signals, enabling a diversity of simultaneous experiments, as well as better crosschecks and controls.

2,960 citations