scispace - formally typeset
Search or ask a question
Author

Keith Corzine

Bio: Keith Corzine is an academic researcher from University of California, Santa Cruz. The author has contributed to research in topics: Converters & Electric power system. The author has an hindex of 47, co-authored 202 publications receiving 6966 citations. Previous affiliations of Keith Corzine include University of California & Clemson University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a general structure for cascaded power converters is presented in which any number of H-bridge cells having any number voltage levels are series connected to form an inverter phase leg.
Abstract: In this paper, a general structure for cascaded power converters is presented in which any number of H-bridge cells having any number of voltage levels are series connected to form an inverter phase leg. Equations are introduced for determining an optimal voltage ratio of DC voltages for the H-bridge cells which will maximize the number of voltage levels obtainable resulting in high power quality. Special cases of the generalized inverter are presented including novel 11-level and 15-level inverters. Laboratory measurements demonstrate the proposed inverter performance.

348 citations

Proceedings ArticleDOI
01 Jun 2003
TL;DR: In this paper, a multilevel inverter is introduced which is created by cascading two three-phase three-level inverters using the load connection, but requires only one dc voltage source.
Abstract: A new type of multilevel inverter is introduced which is created by cascading two three-phase three-level inverters using the load connection, but requires only one dc voltage source. This new inverter can operate as a seven-level inverter and naturally splits the power conversion into a higher-voltage lower-frequency inverter and a lower-voltage higher-frequency inverter. This type of system presents particular advantages to Naval ship propulsion systems which rely on high power quality, survivable drives. New control methods are described involving both joint and separate control of the individual three-level inverters. Simulation results demonstrate the effectiveness of both controls. A laboratory set-up at the Naval Surface Warfare Center power electronics laboratory was used to validate the proposed joint-inverter control. Due to the effect of compounding levels in the cascaded inverter, a high number of levels are available resulting in a voltage THD of 9% (without filtering).

253 citations

Journal ArticleDOI
TL;DR: In this article, a joint-phase redundancy control for flying capacitor multilevel inverters (FCMIs) has been proposed to improve capacitor voltage balancing under a wide range of power factors and modulation indices.
Abstract: Recent research in flying capacitor multilevel inverters (FCMIs) has shown that the number of voltage levels can be extended by changing the ratio of the capacitor voltages. For the three-cell FCMI, four levels of operation are expected if the traditional ratio of the capacitor voltages is 1:2:3. However, by altering the ratio, the inverter can operate as a five-, six-, seven-, or eight-level inverter. According to previous research, the eight-level case is referred to as maximally distended (or full binary combination schema) since it utilizes all possible transistor switching states. However, this case does not have enough per-phase redundancy to ensure capacitor voltage balancing under all modes of operation. In this paper, redundancy involving all phases is used along with per-phase redundancy to improve capacitor voltage balancing. It is shown that the four- and five-level cases are suitable for motor drive operation and can maintain capacitor voltage balance under a wide range of power factors and modulation indices. The six-, seven-, and eight-level cases are suitable for reactive power transfer in applications such as static var compensation. Simulation and laboratory measurements verify the proposed joint-phase redundancy control.

240 citations

Journal ArticleDOI
TL;DR: In this paper, a two-level power converter is proposed which utilizes two six-transistor inverters and is capable of producing voltages which are identical to those of three-level and four-level converters.
Abstract: A cascaded two-level power converter is proposed which utilizes two six-transistor inverters and is capable of producing voltages which are identical to those of three-level and four-level converters. Since the machine voltages are the same, the converter performance is the same as is verified through laboratory tests. The advantages and disadvantages of the proposed cascaded converter are explored. The proposed converter is simpler to construct and offers more nonredundant switching states per number of active semiconductors than standard multi-level converters.

231 citations

Journal ArticleDOI
TL;DR: Two active capacitor voltage balancing schemes are proposed for single-phase (H-bridge) flying-capacitor multilevel converters that can be utilized to converters with any desired number of levels in their output voltage.
Abstract: Two active capacitor voltage balancing schemes are proposed for single-phase (H-bridge) flying-capacitor multilevel converters. They are based on the circuit equations of flying-capacitor converters. Consequently, they can be implemented using straightforward control rules. In particular, the first technique is based on an algorithm which follows the standard multilevel modulation. Then, it utilizes a redundant state selection table for capacitor voltage balancing. In the second method, multiple duty cycles are defined and modulated in direct response to the capacitor voltages. The most important advantage of these two proposed methods is that they can be utilized to converters with any desired number of levels in their output voltage. Moreover, the analysis and implementation of both methods are straightforward. Through simulation and experimental implementation, these methods are shown to be effective on capacitor voltage regulation in flying-capacitor multilevel converters.

222 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The most important topologies like diode-clamped inverter (neutral-point clamped), capacitor-Clamped (flying capacitor), and cascaded multicell with separate DC sources are presented and the circuit topology options are presented.
Abstract: Multilevel inverter technology has emerged recently as a very important alternative in the area of high-power medium-voltage energy control. This paper presents the most important topologies like diode-clamped inverter (neutral-point clamped), capacitor-clamped (flying capacitor), and cascaded multicell with separate DC sources. Emerging topologies like asymmetric hybrid cells and soft-switched multilevel inverters are also discussed. This paper also presents the most relevant control and modulation methods developed for this family of converters: multilevel sinusoidal pulsewidth modulation, multilevel selective harmonic elimination, and space-vector modulation. Special attention is dedicated to the latest and more relevant applications of these converters such as laminators, conveyor belts, and unified power-flow controllers. The need of an active front end at the input side for those inverters supplying regenerative loads is also discussed, and the circuit topology options are also presented. Finally, the peripherally developing areas such as high-voltage high-power devices and optical sensors and other opportunities for future development are addressed.

6,472 citations

Journal ArticleDOI
TL;DR: This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry.
Abstract: Multilevel converters have been under research and development for more than three decades and have found successful industrial application. However, this is still a technology under development, and many new contributions and new commercial topologies have been reported in the last few years. The aim of this paper is to group and review these recent contributions, in order to establish the current state of the art and trends of the technology, to provide readers with a comprehensive and insightful review of where multilevel converter technology stands and is heading. This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry. In addition, new promising topologies are discussed. Recent advances made in modulation and control of multilevel converters are also addressed. A great part of this paper is devoted to show nontraditional applications powered by multilevel converters and how multilevel converters are becoming an enabling technology in many industrial sectors. Finally, some future trends and challenges in the further development of this technology are discussed to motivate future contributions that address open problems and explore new possibilities.

3,415 citations

Journal ArticleDOI
TL;DR: In this paper, the authors survey the literature till 2011 on the enabling technologies for the Smart Grid and explore three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system.
Abstract: The Smart Grid, regarded as the next generation power grid, uses two-way flows of electricity and information to create a widely distributed automated energy delivery network. In this article, we survey the literature till 2011 on the enabling technologies for the Smart Grid. We explore three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system. We also propose possible future directions in each system. colorred{Specifically, for the smart infrastructure system, we explore the smart energy subsystem, the smart information subsystem, and the smart communication subsystem.} For the smart management system, we explore various management objectives, such as improving energy efficiency, profiling demand, maximizing utility, reducing cost, and controlling emission. We also explore various management methods to achieve these objectives. For the smart protection system, we explore various failure protection mechanisms which improve the reliability of the Smart Grid, and explore the security and privacy issues in the Smart Grid.

2,433 citations

01 Jan 2012
TL;DR: This article surveys the literature till 2011 on the enabling technologies for the Smart Grid, and explores three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system.

2,337 citations