scispace - formally typeset
Search or ask a question
Author

Keith Fagnou

Bio: Keith Fagnou is an academic researcher from University of Ottawa. The author has contributed to research in topics: Aryl & Catalysis. The author has an hindex of 53, co-authored 107 publications receiving 17096 citations. Previous affiliations of Keith Fagnou include University of Toronto & Claude Bernard University Lyon 1.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The cleavage of aromatic C-H bonds promoted by a metal and an intramolecular base has been described over 50 years ago as discussed by the authors, and a discussion of selected mechanistic studies of this transformation can be found in this paper.
Abstract: The cleavage of aromatic C–H bonds promoted by a metal and an intramolecular base has been described over 50 years ago. Herein, discussion of selected mechanistic studies of this transformation wil...

911 citations

Journal ArticleDOI
25 May 2007-Science
TL;DR: P palladium, in conjunction with a copper oxidant, can catalyze the cross-coupling of N-acetylindoles and benzenes in high yield and high regioselectivity across a range of indoles without recourse to activating groups.
Abstract: The industrially important coupling of aromatic compounds has generally required differential prefunctionalization of the arene coupling partners with a halide and an electropositive group. Here we report that palladium, in conjunction with a copper oxidant, can catalyze the cross-coupling of N-acetylindoles and benzenes in high yield and high regioselectivity across a range of indoles without recourse to activating groups. These reactions are completely selective for arene cross-coupling, with no products arising from indole or benzene homo-coupling detected by spectroscopic analysis. This efficient reactivity should be useful in the design of other oxidative arene cross-couplings as well.

889 citations

Journal ArticleDOI
TL;DR: Experimental and computational evidence indicates that the pivalate anion is a key component in the palladium-pivalic acid cocatalyst system, that it lowers the energy of C-H bond cleavage and acts as a catalytic proton shuttle from benzene to the stoichiometric carbonate base.
Abstract: A palladium−pivalic acid cocatalyst system has been developed that exhibits unprecedented reactivity in direct arylation This reactivity is illustrated with the first examples of high yielding direct metalation−arylation reactions of a completely unactivated arene, benzene Experimental and computational evidence indicates that the pivalate anion is a key component in the palladation/C−H bond breaking event, that it lowers the energy of C−H bond cleavage and acts as a catalytic proton shuttle from benzene to the stoichiometric carbonate base Eight examples of substituted aryl bromides are included which undergo direct arylation with benzene in 55−85% yield

839 citations

Journal ArticleDOI
TL;DR: The breadth of arenes whose reactivity can be predicted by the CMD mechanism indicates that it may be far more widespread than previously imagined.
Abstract: The concerted metalation−deprotonation mechanism predicts relative reactivity and regioselectivity for a diverse set of arenes spanning the entire spectrum of known palladium-catalyzed direct arylation coupling partners. An analysis following an active strain model provides a more complete portrayal of the important arene/catalyst parameters leading to a successful coupling. The breadth of arenes whose reactivity can be predicted by the CMD mechanism indicates that it may be far more widespread than previously imagined.

821 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of palladium-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle can be found in this paper.
Abstract: Pick your Pd partners: A number of catalytic systems have been developed for palladium-catalyzed CH activation/CC bond formation. Recent studies concerning the palladium(II)-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle are discussed (see scheme), and the versatility and practicality of this new mode of catalysis are presented. Unaddressed questions and the potential for development in the field are also addressed. In the past decade, palladium-catalyzed CH activation/CC bond-forming reactions have emerged as promising new catalytic transformations; however, development in this field is still at an early stage compared to the state of the art in cross-coupling reactions using aryl and alkyl halides. This Review begins with a brief introduction of four extensively investigated modes of catalysis for forming CC bonds from CH bonds: PdII/Pd0, PdII/PdIV, Pd0/PdII/PdIV, and Pd0/PdII catalysis. A more detailed discussion is then directed towards the recent development of palladium(II)-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle. Despite the progress made to date, improving the versatility and practicality of this new reaction remains a tremendous challenge.

3,533 citations

Journal ArticleDOI
TL;DR: This review focuses on Rh-catalyzed methods for C-H bond functionalization, which have seen widespread success over the course of the last decade and are discussed in detail in the accompanying articles in this special issue of Chemical Reviews.
Abstract: Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has seen widespread success involves the use of a proximal heteroatom that serves as a directing group for the selective functionalization of a specific C-H bond. In a survey of examples of heteroatom-directed Rh catalysis, two mechanistically distinct reaction pathways are revealed. In one case, the heteroatom acts as a chelator to bind the Rh catalyst, facilitating reactivity at a proximal site. In this case, the formation of a five-membered metallacycle provides a favorable driving force in inducing reactivity at the desired location. In the other case, the heteroatom initially coordinates the Rh catalyst and then acts to stabilize the formation of a metal-carbon bond at a proximal site. A true test of the utility of a synthetic method is in its application to the synthesis of natural products or complex molecules. Several groups have demonstrated the applicability of C-H bond functionalization reactions towards complex molecule synthesis. Target-oriented synthesis provides a platform to test the effectiveness of a method in unique chemical and steric environments. In this respect, Rh-catalyzed methods for C-H bond functionalization stand out, with several syntheses being described in the literature that utilize C-H bond functionalization in a key step. These syntheses are highlighted following the discussion of the method they employ.

3,210 citations

Journal ArticleDOI
TL;DR: A number of improvements have developed the former process into an industrially very useful and attractive method for the construction of aryl -aryl bonds, but the need still exists for more efficient routes whereby the same outcome is accomplished, but with reduced waste and in fewer steps.
Abstract: The biaryl structural motif is a predominant feature in many pharmaceutically relevant and biologically active compounds. As a result, for over a century 1 organic chemists have sought to develop new and more efficient aryl -aryl bond-forming methods. Although there exist a variety of routes for the construction of aryl -aryl bonds, arguably the most common method is through the use of transition-metalmediated reactions. 2-4 While earlier reports focused on the use of stoichiometric quantities of a transition metal to carry out the desired transformation, modern methods of transitionmetal-catalyzed aryl -aryl coupling have focused on the development of high-yielding reactions achieved with excellent selectivity and high functional group tolerance under mild reaction conditions. Typically, these reactions involve either the coupling of an aryl halide or pseudohalide with an organometallic reagent (Scheme 1), or the homocoupling of two aryl halides or two organometallic reagents. Although a number of improvements have developed the former process into an industrially very useful and attractive method for the construction of aryl -aryl bonds, the need still exists for more efficient routes whereby the same outcome is accomplished, but with reduced waste and in fewer steps. In particular, the obligation to use coupling partners that are both activated is wasteful since it necessitates the installation and then subsequent disposal of stoichiometric activating agents. Furthermore, preparation of preactivated aryl substrates often requires several steps, which in itself can be a time-consuming and economically inefficient process.

3,204 citations

Journal ArticleDOI
TL;DR: The concepts of design and the scientific philosophy of Green Chemistry are covered with a set of illustrative examples and the challenge of using the Principles as a cohesive design system is discussed.
Abstract: Green Chemistry is a relatively new emerging field that strives to work at the molecular level to achieve sustainability. The field has received widespread interest in the past decade due to its ability to harness chemical innovation to meet environmental and economic goals simultaneously. Green Chemistry has a framework of a cohesive set of Twelve Principles, which have been systematically surveyed in this critical review. This article covers the concepts of design and the scientific philosophy of Green Chemistry with a set of illustrative examples. Future trends in Green Chemistry are discussed with the challenge of using the Principles as a cohesive design system (93 references).

2,942 citations