scispace - formally typeset
Search or ask a question
Author

Keith Hall

Bio: Keith Hall is an academic researcher from Google. The author has contributed to research in topics: Language model & Parsing. The author has an hindex of 24, co-authored 65 publications receiving 3620 citations. Previous affiliations of Keith Hall include Johns Hopkins University & Brown University.


Papers
More filters
Proceedings ArticleDOI
31 May 2009
TL;DR: This paper presents and compares WordNet-based and distributional similarity approaches, and pioneer cross-lingual similarity, showing that the methods are easily adapted for a cross-lingsual task with minor losses.
Abstract: This paper presents and compares WordNet-based and distributional similarity approaches. The strengths and weaknesses of each approach regarding similarity and relatedness tasks are discussed, and a combination is presented. Each of our methods independently provide the best results in their class on the RG and WordSim353 datasets, and a supervised combination of them yields the best published results on all datasets. Finally, we pioneer cross-lingual similarity, showing that our methods are easily adapted for a cross-lingual task with minor losses.

936 citations

Proceedings Article
01 Aug 2013
TL;DR: A new collection of treebanks with homogeneous syntactic dependency annotation for six languages: German, English, Swedish, Spanish, French and Korean is presented, made freely available in order to facilitate research on multilingual dependency parsing.
Abstract: We present a new collection of treebanks with homogeneous syntactic dependency annotation for six languages: German, English, Swedish, Spanish, French and Korean. To show the usefulness of such a resource, we present a case study of crosslingual transfer parsing with more reliable evaluation than has been possible before. This ‘universal’ treebank is made freely available in order to facilitate research on multilingual dependency parsing. 1

489 citations

Proceedings Article
21 Aug 2003
TL;DR: Correlated-Q (CE-Q) learning is introduced, a multiagent Q-learning algorithm based on the correlated equilibrium (CE) solution concept that generalizes both Nash-Q and Friend-and-Foe-Q.
Abstract: This paper introduces Correlated-Q (CE-Q) learning, a multiagent Q-learning algorithm based on the correlated equilibrium (CE) solution concept. CE-Q generalizes both Nash-Q and Friend-and-Foe-Q: in general-sum games, the set of correlated equilibria contains the set of Nash equilibria; in constant-sum games, the set of correlated equilibria contains the set of minimax equilibria. This paper describes experiments with four variants of CE-Q, demonstrating empirical convergence to equilibrium policies on a testbed of general-sum Markov games.

436 citations

Proceedings Article
Ryan McDonald1, Slav Petrov1, Keith Hall1
27 Jul 2011
TL;DR: This work demonstrates that delexicalized parsers can be directly transferred between languages, producing significantly higher accuracies than unsupervised parsers and shows that simple methods for introducing multiple source languages can significantly improve the overall quality of the resulting parsers.
Abstract: We present a simple method for transferring dependency parsers from source languages with labeled training data to target languages without labeled training data. We first demonstrate that delexicalized parsers can be directly transferred between languages, producing significantly higher accuracies than unsupervised parsers. We then use a constraint driven learning algorithm where constraints are drawn from parallel corpora to project the final parser. Unlike previous work on projecting syntactic resources, we show that simple methods for introducing multiple source languages can significantly improve the overall quality of the resulting parsers. The projected parsers from our system result in state-of-the-art performance when compared to previously studied unsupervised and projected parsing systems across eight different languages.

359 citations

Proceedings Article
02 Jun 2010
TL;DR: This paper investigates distributed training strategies for the structured perceptron as a means to reduce training times when computing clusters are available and looks at two strategies and provides convergence bounds for a particular mode of distributed structured perceptrons training based on iterative parameter mixing (or averaging).
Abstract: Perceptron training is widely applied in the natural language processing community for learning complex structured models. Like all structured prediction learning frameworks, the structured perceptron can be costly to train as training complexity is proportional to inference, which is frequently non-linear in example sequence length. In this paper we investigate distributed training strategies for the structured perceptron as a means to reduce training times when computing clusters are available. We look at two strategies and provide convergence bounds for a particular mode of distributed structured perceptron training based on iterative parameter mixing (or averaging). We present experiments on two structured prediction problems -- named-entity recognition and dependency parsing -- to highlight the efficiency of this method.

307 citations


Cited by
More filters
Book
23 May 2011
TL;DR: It is argued that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas.
Abstract: Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompanying distributed solution methods are either necessary or at least highly desirable. In this review, we argue that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas. The method was developed in the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms, such as dual decomposition, the method of multipliers, Douglas–Rachford splitting, Spingarn's method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for l1 problems, proximal methods, and others. After briefly surveying the theory and history of the algorithm, we discuss applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others. We also discuss general distributed optimization, extensions to the nonconvex setting, and efficient implementation, including some details on distributed MPI and Hadoop MapReduce implementations.

17,433 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Posted Content
H. Brendan McMahan1, Eider Moore1, Daniel Ramage1, Seth Hampson, Blaise Aguera y Arcas1 
TL;DR: This work presents a practical method for the federated learning of deep networks based on iterative model averaging, and conducts an extensive empirical evaluation, considering five different model architectures and four datasets.
Abstract: Modern mobile devices have access to a wealth of data suitable for learning models, which in turn can greatly improve the user experience on the device. For example, language models can improve speech recognition and text entry, and image models can automatically select good photos. However, this rich data is often privacy sensitive, large in quantity, or both, which may preclude logging to the data center and training there using conventional approaches. We advocate an alternative that leaves the training data distributed on the mobile devices, and learns a shared model by aggregating locally-computed updates. We term this decentralized approach Federated Learning. We present a practical method for the federated learning of deep networks based on iterative model averaging, and conduct an extensive empirical evaluation, considering five different model architectures and four datasets. These experiments demonstrate the approach is robust to the unbalanced and non-IID data distributions that are a defining characteristic of this setting. Communication costs are the principal constraint, and we show a reduction in required communication rounds by 10-100x as compared to synchronized stochastic gradient descent.

5,936 citations

Proceedings Article
03 Dec 2012
TL;DR: This paper considers the problem of training a deep network with billions of parameters using tens of thousands of CPU cores and develops two algorithms for large-scale distributed training, Downpour SGD and Sandblaster L-BFGS, which increase the scale and speed of deep network training.
Abstract: Recent work in unsupervised feature learning and deep learning has shown that being able to train large models can dramatically improve performance. In this paper, we consider the problem of training a deep network with billions of parameters using tens of thousands of CPU cores. We have developed a software framework called DistBelief that can utilize computing clusters with thousands of machines to train large models. Within this framework, we have developed two algorithms for large-scale distributed training: (i) Downpour SGD, an asynchronous stochastic gradient descent procedure supporting a large number of model replicas, and (ii) Sandblaster, a framework that supports a variety of distributed batch optimization procedures, including a distributed implementation of L-BFGS. Downpour SGD and Sandblaster L-BFGS both increase the scale and speed of deep network training. We have successfully used our system to train a deep network 30x larger than previously reported in the literature, and achieves state-of-the-art performance on ImageNet, a visual object recognition task with 16 million images and 21k categories. We show that these same techniques dramatically accelerate the training of a more modestly- sized deep network for a commercial speech recognition service. Although we focus on and report performance of these methods as applied to training large neural networks, the underlying algorithms are applicable to any gradient-based machine learning algorithm.

3,475 citations

Reference EntryDOI
15 Oct 2004

2,118 citations