scispace - formally typeset
Search or ask a question
Author

Keith Hanna

Other affiliations: SRI International
Bio: Keith Hanna is an academic researcher from Sarnoff Corporation. The author has contributed to research in topics: Image processing & Motion estimation. The author has an hindex of 29, co-authored 55 publications receiving 5705 citations. Previous affiliations of Keith Hanna include SRI International.


Papers
More filters
Book ChapterDOI
19 May 1992
TL;DR: In this paper, a hierarchical estimation framework for the computation of diverse representations of motion information is described, which includes a global model that constrains the overall structure of the motion estimated, a local model that is used in the estimation process, and a coarse-fine refinement strategy.
Abstract: This paper describes a hierarchical estimation framework for the computation of diverse representations of motion information. The key features of the resulting framework (or family of algorithms) are a global model that constrains the overall structure of the motion estimated, a local model that is used in the estimation process, and a coarse-fine refinement strategy. Four specific motion models: affine flow, planar surface flow, rigid body motion, and general optical flow, are described along with their application to specific examples.

1,501 citations

Patent
03 Dec 1996
TL;DR: In this article, the irises of a human or an animal in an image with little or no active involvement by the human or animal was analyzed. And a method for obtaining and analyzing images of at least one object in a scene comprising capturing a wide field of view image of the object to locate the object in the scene; and then using a narrow field-of-view (NFOV) imager responsive to the location information provided in the capturing step to obtain higher resolution image.
Abstract: A recognition system which obtains and analyzes images of at least one object in a scene comprising a wide field of view (WFOV) imager which is used to capture an image of the scene and to locate the object and a narrow field of view (NFOV) imager which is responsive to the location information provided by the WFOV imager and which is used to capture an image of the object, the image of the object having a higher resolution than the image captured by the WFOV imager is disclosed. In one embodiment, a system that obtains and analyzes images of the irises of eyes of a human or animal in an image with little or no active involvement by the human or animal is disclosed. A method for obtaining and analyzing images of at least one object in a scene comprising capturing a wide field of view image of the object to locate the object in the scene; and then using a narrow field of view imager responsive to the location information provided in the capturing step to obtain higher resolution image of the object is also disclosed.

599 citations

Patent
05 Sep 1995
TL;DR: Iris recognition is achieved by iris acquisition that permits a user to self-position his or her eye (216) into an imager's (200) field of view without the need for any physical contact as discussed by the authors.
Abstract: Iris recognition is achieved by iris acquisition that permits a user to self-position his or her eye (216) into an imager's (200) field of view without the need for any physical contact, spatially locating the data defining that portion of a digitized video image of the user's eye that defines solely the iris thereof without any initial spatial condition of the iris being provided, and pattern matching the spatially located data defining the iris of the user's eye with stored data defining a model iris by employing normalized spatial correlation for first comparing, at each of a plurality of spatial scales, each of distinctive spatial characteristics of the respective irises that are spatially registered with one another to quantitatively determine, at each of the plurality of spatial scales, a goodness value of match at that spatial scale, and then judging whether or not the pattern which manifests solely the iris of the user's eye matches the digital data which manifests solely the model iris in accordance with a certain combination of the quantitatively-determined goodness values of match at each of said plurality of spatial scales.

499 citations

Journal ArticleDOI
01 Nov 2006
TL;DR: The Iris on the Move (IOM) system is the first system to enable capture of iris images of sufficient quality for iris recognition while the subject is moving at a normal walking pace through a minimally confining portal.
Abstract: Iris recognition is one of the most powerful techniques for biometric identification ever developed. Commercial systems based on the algorithms developed by John Daugman have been available since 1995 and have been used in a variety of practical applications. However, all currently available systems impose substantial constraints on subject position and motion during the recognition process. These constraints are largely driven by the image acquisition process, rather than the particular pattern-matching algorithm used for the recognition process. In this paper we present results of our efforts to substantially reduce constraints on position and motion by means of a new image acquisition system based on high-resolution cameras, video synchronized strobed illumination, and specularity based image segmentation. We discuss the design tradeoffs we made in developing the system and the performance we have been able to achieve when the image acquisition system is combined with a standard iris recognition algorithm. The Iris on the Move (IOM) system is the first system to enable capture of iris images of sufficient quality for iris recognition while the subject is moving at a normal walking pace through a minimally confining portal

336 citations

Patent
21 Oct 2003
TL;DR: In this article, a method for detecting moving objects and controlling a surveillance system includes a processing module adapted to receive image information from at least one imaging sensor, which performs motion detection analysis upon captured images and controls the camera in a specific manner upon detection of a moving object.
Abstract: A method for detecting moving objects (fig. 10) and controlling a surveillance system includes a processing module (1016) adapted to receive image information from at least one imaging sensor (104). The system performs motion detection analysis upon captured images and controls the camera (104) in a specific manner upon detection of a moving object. The image processing using the camera (104) orientation, a moving object position, latitude, longitude and altitude within a surveillance area to facilitate mapping images captured by the camera (104) to a reference map of the surveillance area.

217 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper has designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can easily be extended to include new algorithms.
Abstract: Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, two-frame stereo methods designed to assess the different components and design decisions made in individual stereo algorithms. Using this taxonomy, we compare existing stereo methods and present experiments evaluating the performance of many different variants. In order to establish a common software platform and a collection of data sets for easy evaluation, we have designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can be easily extended to include new algorithms. We have also produced several new multiframe stereo data sets with ground truth, and are making both the code and data sets available on the Web.

7,458 citations

Journal ArticleDOI
TL;DR: The results clearly indicate that the proposed nonrigid registration algorithm is much better able to recover the motion and deformation of the breast than rigid or affine registration algorithms.
Abstract: In this paper the authors present a new approach for the nonrigid registration of contrast-enhanced breast MRI. A hierarchical transformation model of the motion of the breast has been developed. The global motion of the breast is modeled by an affine transformation while the local breast motion is described by a free-form deformation (FFD) based on B-splines. Normalized mutual information is used as a voxel-based similarity measure which is insensitive to intensity changes as a result of the contrast enhancement. Registration is achieved by minimizing a cost function, which represents a combination of the cost associated with the smoothness of the transformation and the cost associated with the image similarity. The algorithm has been applied to the fully automated registration of three-dimensional (3-D) breast MRI in volunteers and patients. In particular, the authors have compared the results of the proposed nonrigid registration algorithm to those obtained using rigid and affine registration techniques. The results clearly indicate that the nonrigid registration algorithm is much better able to recover the motion and deformation of the breast than rigid or affine registration algorithms.

5,490 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations

Journal ArticleDOI
TL;DR: In this paper, a wide variety of extensions have been made to the original formulation of the Lucas-Kanade algorithm and their extensions can be used with the inverse compositional algorithm without any significant loss of efficiency.
Abstract: Since the Lucas-Kanade algorithm was proposed in 1981 image alignment has become one of the most widely used techniques in computer vision Applications range from optical flow and tracking to layered motion, mosaic construction, and face coding Numerous algorithms have been proposed and a wide variety of extensions have been made to the original formulation We present an overview of image alignment, describing most of the algorithms and their extensions in a consistent framework We concentrate on the inverse compositional algorithm, an efficient algorithm that we recently proposed We examine which of the extensions to Lucas-Kanade can be used with the inverse compositional algorithm without any significant loss of efficiency, and which cannot In this paper, Part 1 in a series of papers, we cover the quantity approximated, the warp update rule, and the gradient descent approximation In future papers, we will cover the choice of the error function, how to allow linear appearance variation, and how to impose priors on the parameters

3,168 citations

Journal ArticleDOI
TL;DR: This paper proposes a new set of benchmarks and evaluation methods for the next generation of optical flow algorithms and analyzes the results obtained to date to draw a large number of conclusions.
Abstract: The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex natural scenes, including nonrigid motion, real sensor noise, and motion discontinuities. We propose a new set of benchmarks and evaluation methods for the next generation of optical flow algorithms. To that end, we contribute four types of data to test different aspects of optical flow algorithms: (1) sequences with nonrigid motion where the ground-truth flow is determined by tracking hidden fluorescent texture, (2) realistic synthetic sequences, (3) high frame-rate video used to study interpolation error, and (4) modified stereo sequences of static scenes. In addition to the average angular error used by Barron et al., we compute the absolute flow endpoint error, measures for frame interpolation error, improved statistics, and results at motion discontinuities and in textureless regions. In October 2007, we published the performance of several well-known methods on a preliminary version of our data to establish the current state of the art. We also made the data freely available on the web at http://vision.middlebury.edu/flow/ . Subsequently a number of researchers have uploaded their results to our website and published papers using the data. A significant improvement in performance has already been achieved. In this paper we analyze the results obtained to date and draw a large number of conclusions from them.

2,534 citations