scispace - formally typeset
Search or ask a question
Author

Kelly G. Stratton

Bio: Kelly G. Stratton is an academic researcher from Pacific Northwest National Laboratory. The author has contributed to research in topics: Medicine & Oncology. The author has an hindex of 8, co-authored 12 publications receiving 2627 citations. Previous affiliations of Kelly G. Stratton include Fred Hutchinson Cancer Research Center.

Papers
More filters
Journal ArticleDOI
Peter Goldstraw1, Kari Chansky, John Crowley, Ramón Rami-Porta2, Hisao Asamura3, Wilfried Ernst Erich Eberhardt4, Andrew G. Nicholson1, Patti A. Groome5, Alan Mitchell, Vanessa Bolejack, David Ball6, David G. Beer7, Ricardo Beyruti8, Frank C. Detterbeck9, Wilfried Eberhardt4, John G. Edwards10, Françoise Galateau-Salle11, Dorothy Giroux12, Fergus V. Gleeson13, James Huang14, Catherine Kennedy15, Jhingook Kim16, Young Tae Kim17, Laura Kingsbury12, Haruhiko Kondo18, Mark Krasnik19, Kaoru Kubota20, Antoon Lerut21, Gustavo Lyons, Mirella Marino, Edith M. Marom22, Jan P. van Meerbeeck23, Takashi Nakano24, Anna K. Nowak25, Michael D Peake26, Thomas W. Rice27, Kenneth E. Rosenzweig28, Enrico Ruffini29, Valerie W. Rusch14, Nagahiro Saijo, Paul Van Schil23, Jean-Paul Sculier30, Lynn Shemanski12, Kelly G. Stratton12, Kenji Suzuki31, Yuji Tachimori32, Charles F. Thomas33, William D. Travis14, Ming-Sound Tsao34, Andrew T. Turrisi35, Johan Vansteenkiste21, Hirokazu Watanabe, Yi-Long Wu, Paul Baas36, Jeremy J. Erasmus22, Seiki Hasegawa24, Kouki Inai37, Kemp H. Kernstine38, Hedy L. Kindler39, Lee M. Krug14, Kristiaan Nackaerts21, Harvey I. Pass40, David C. Rice22, Conrad Falkson5, Pier Luigi Filosso29, Giuseppe Giaccone41, Kazuya Kondo42, Marco Lucchi43, Meinoshin Okumura44, Eugene H. Blackstone27, F. Abad Cavaco, E. Ansótegui Barrera, J. Abal Arca, I. Parente Lamelas, A. Arnau Obrer45, R. Guijarro Jorge45, D. Ball6, G.K. Bascom46, A. I. Blanco Orozco, M. A. González Castro, M.G. Blum, D. Chimondeguy, V. Cvijanovic47, S. Defranchi48, B. de Olaiz Navarro, I. Escobar Campuzano2, I. Macía Vidueira2, E. Fernández Araujo49, F. Andreo García49, Kwun M. Fong, G. Francisco Corral, S. Cerezo González, J. Freixinet Gilart, L. García Arangüena, S. García Barajas50, P. Girard, Tuncay Göksel, M. T. González Budiño51, G. González Casaurrán50, J. A. Gullón Blanco, J. Hernández Hernández, H. Hernández Rodríguez, J. Herrero Collantes, M. Iglesias Heras, J. M. Izquierdo Elena, Erik Jakobsen, S. Kostas52, P. León Atance, A. Núñez Ares, M. Liao, M. Losanovscky, G. Lyons, R. Magaroles53, L. De Esteban Júlvez53, M. Mariñán Gorospe, Brian C. McCaughan15, Catherine J. Kennedy15, R. Melchor Íñiguez54, L. Miravet Sorribes, S. Naranjo Gozalo, C. Álvarez de Arriba, M. Núñez Delgado, J. Padilla Alarcón, J. C. Peñalver Cuesta, Jongsun Park16, H. Pass40, M. J. Pavón Fernández, Mara Rosenberg, Enrico Ruffini29, V. Rusch14, J. Sánchez de Cos Escuín, A. Saura Vinuesa, M. Serra Mitjans, Trond Eirik Strand, Dragan Subotic, S.G. Swisher22, Ricardo Mingarini Terra8, Charles R. Thomas33, Kurt G. Tournoy55, P. Van Schil23, M. Velasquez, Y.L. Wu, K. Yokoi 
Imperial College London1, University of Barcelona2, Keio University3, University of Duisburg-Essen4, Queen's University5, Peter MacCallum Cancer Centre6, University of Michigan7, University of São Paulo8, Yale University9, Northern General Hospital10, University of Caen Lower Normandy11, Fred Hutchinson Cancer Research Center12, University of Oxford13, Memorial Sloan Kettering Cancer Center14, University of Sydney15, Sungkyunkwan University16, Seoul National University17, Kyorin University18, University of Copenhagen19, Nippon Medical School20, Katholieke Universiteit Leuven21, University of Texas MD Anderson Cancer Center22, University of Antwerp23, Hyogo College of Medicine24, University of Western Australia25, Glenfield Hospital26, Cleveland Clinic27, Icahn School of Medicine at Mount Sinai28, University of Turin29, Université libre de Bruxelles30, Juntendo University31, National Cancer Research Institute32, Mayo Clinic33, University of Toronto34, Sinai Grace Hospital35, Netherlands Cancer Institute36, Hiroshima University37, City of Hope National Medical Center38, University of Chicago39, New York University40, Georgetown University41, University of Tokushima42, University of Pisa43, Osaka University44, University of Valencia45, Good Samaritan Hospital46, Military Medical Academy47, Fundación Favaloro48, Autonomous University of Barcelona49, Complutense University of Madrid50, University of Oviedo51, National and Kapodistrian University of Athens52, Rovira i Virgili University53, Autonomous University of Madrid54, Ghent University55
TL;DR: The methods used to evaluate the resultant Stage groupings and the proposals put forward for the 8th edition of the TNM Classification for lung cancer due to be published late 2016 are described.

2,826 citations

Journal ArticleDOI
William D. Travis1, Hisao Asamura2, Alexander A. Bankier3, Mary Beth Beasley4, Frank C. Detterbeck5, Douglas B. Flieder6, Jin Mo Goo7, Heber MacMahon8, David P. Naidich9, Andrew G. Nicholson10, Charles A. Powell, Mathias Prokop11, Ramón Rami-Porta12, Valerie W. Rusch1, Paul Van Schil, Yasushi Yatabe, Peter Goldstraw10, David Ball13, David G. Beer14, Ricardo Beyruti15, Vanessa Bolejack16, Kari Chansky16, John Crowley16, Wilfried Eberhardt17, John G. Edwards18, Françoise Galateau-Salle19, Dorothy Giroux16, Fergus V. Gleeson20, Patti A. Groome21, James Huang1, Catherine Kennedy22, Jhingook Kim23, Young Tae Kim24, Laura Kingsbury16, Haruhiko Kondo25, Mark Krasnik26, Kaoru Kubota27, Antoon Lerut28, Gustavo Lyons29, Mirella Marino, Edith M. Marom30, Jan P. van Meerbeeck31, Alan Mitchell16, Takashi Nakano32, Anna K. Nowak33, Michael D Peake34, Thomas W. Rice35, Kenneth E. Rosenzweig36, Enrico Ruffini37, Nagahiro Saijo, Jean-Paul Sculier38, Lynn Shemanski16, Kelly G. Stratton16, Kenji Suzuki39, Yuji Tachimori40, Charles F. Thomas41, William D. Travis1, Ming-Sound Tsao42, Andrew T. Turrisi43, Johan Vansteenkiste28, Hirokazu Watanabe, Yi-Long Wu, Paul Baas44, Jeremy J. Erasmus30, Seiki Hasegawa32, Kouki Inai45, Kemp H. Kernstine46, Hedy L. Kindler8, Lee M. Krug1, Kristiaan Nackaerts28, Harvey I. Pass9, David C. Rice30, Conrad Falkson21, Pier Luigi Filosso37, Giuseppe Giaccone47, Kazuya Kondo48, Marco Lucchi49, Meinoshin Okumura50, Eugene H. Blackstone35 
TL;DR: Codes for the primary tumor categories of AIS and minimally invasive adenocarcinoma (MIA) and a uniform way to measure tumor size in part‐solid tumors for the eighth edition of the tumor, node, and metastasis classification of lung cancer are proposed.

431 citations

Journal ArticleDOI
TL;DR: Comparisons across related respiratory virus infections have identified a common avenue used by MERS-CoV and A/influenza/Vietnam/1203/2004 (H5N1-VN1203) influenza to antagonize antigen presentation through epigenetic modulation, and epigenetic analysis suggested that DNA methylation, rather than histone modification, plays a crucial role.
Abstract: Convergent evolution dictates that diverse groups of viruses will target both similar and distinct host pathways to manipulate the immune response and improve infection. In this study, we sought to leverage this uneven viral antagonism to identify critical host factors that govern disease outcome. Utilizing a systems-based approach, we examined differential regulation of IFN-γ-dependent genes following infection with robust respiratory viruses including influenza viruses [A/influenza/Vietnam/1203/2004 (H5N1-VN1203) and A/influenza/California/04/2009 (H1N1-CA04)] and coronaviruses [severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV)]. Categorizing by function, we observed down-regulation of gene expression associated with antigen presentation following both H5N1-VN1203 and MERS-CoV infection. Further examination revealed global down-regulation of antigen-presentation gene expression, which was confirmed by proteomics for both H5N1-VN1203 and MERS-CoV infection. Importantly, epigenetic analysis suggested that DNA methylation, rather than histone modification, plays a crucial role in MERS-CoV-mediated antagonism of antigen-presentation gene expression; in contrast, H5N1-VN1203 likely utilizes a combination of epigenetic mechanisms to target antigen presentation. Together, the results indicate a common mechanism utilized by H5N1-VN1203 and MERS-CoV to modulate antigen presentation and the host adaptive immune response.

130 citations

Journal ArticleDOI
22 Aug 2017-Mbio
TL;DR: The absence of all four Middle East respiratory syndrome CoV accessory ORFs has major implications for viral replication and pathogenesis and disruption of accessory ORF functions in parallel may offer a rapid response platform to attenuation of future emergent strains based on both SARS- and MERS-CoV accessory OrF mutants.
Abstract: While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation. In vitro replication attenuation also extends to in vivo models, allowing use of dORF3-5 as a live attenuated vaccine platform. Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward.IMPORTANCE The initial emergence and periodic outbreaks of MERS-CoV highlight a continuing threat posed by zoonotic pathogens to global public health. In these studies, mutant virus generation demonstrates the necessity of accessory ORFs in regard to MERS-CoV infection and pathogenesis. With this in mind, accessory ORF functions can be targeted for both therapeutic and vaccine treatments in response to MERS-CoV and related group 2C coronaviruses. In addition, disruption of accessory ORFs in parallel may offer a rapid response platform to attenuation of future emergent strains based on both SARS- and MERS-CoV accessory ORF mutants.

122 citations

Journal ArticleDOI
TL;DR: An empiric node map is proposed here to establish a universal language for reporting as well as characterize the staging of this disease more accurately and to define node staging as part of a universal stage classification for thymic malignancy.

102 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The viral factors that enabled the emergence of diseases such as severe acute respiratory syndrome and Middle East respiratory syndrome are explored and the diversity and potential of bat-borne coronaviruses are highlighted.
Abstract: Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are two highly transmissible and pathogenic viruses that emerged in humans at the beginning of the 21st century. Both viruses likely originated in bats, and genetically diverse coronaviruses that are related to SARS-CoV and MERS-CoV were discovered in bats worldwide. In this Review, we summarize the current knowledge on the origin and evolution of these two pathogenic coronaviruses and discuss their receptor usage; we also highlight the diversity and potential of spillover of bat-borne coronaviruses, as evidenced by the recent spillover of swine acute diarrhoea syndrome coronavirus (SADS-CoV) to pigs. Coronaviruses have a broad host range and distribution, and some highly pathogenic lineages have spilled over to humans and animals. Here, Cui, Li and Shi explore the viral factors that enabled the emergence of diseases such as severe acute respiratory syndrome and Middle East respiratory syndrome.

3,970 citations

Journal ArticleDOI
Peter Goldstraw1, Kari Chansky, John Crowley, Ramón Rami-Porta2, Hisao Asamura3, Wilfried Ernst Erich Eberhardt4, Andrew G. Nicholson1, Patti A. Groome5, Alan Mitchell, Vanessa Bolejack, David Ball6, David G. Beer7, Ricardo Beyruti8, Frank C. Detterbeck9, Wilfried Eberhardt4, John G. Edwards10, Françoise Galateau-Salle11, Dorothy Giroux12, Fergus V. Gleeson13, James Huang14, Catherine Kennedy15, Jhingook Kim16, Young Tae Kim17, Laura Kingsbury12, Haruhiko Kondo18, Mark Krasnik19, Kaoru Kubota20, Antoon Lerut21, Gustavo Lyons, Mirella Marino, Edith M. Marom22, Jan P. van Meerbeeck23, Takashi Nakano24, Anna K. Nowak25, Michael D Peake26, Thomas W. Rice27, Kenneth E. Rosenzweig28, Enrico Ruffini29, Valerie W. Rusch14, Nagahiro Saijo, Paul Van Schil23, Jean-Paul Sculier30, Lynn Shemanski12, Kelly G. Stratton12, Kenji Suzuki31, Yuji Tachimori32, Charles F. Thomas33, William D. Travis14, Ming-Sound Tsao34, Andrew T. Turrisi35, Johan Vansteenkiste21, Hirokazu Watanabe, Yi-Long Wu, Paul Baas36, Jeremy J. Erasmus22, Seiki Hasegawa24, Kouki Inai37, Kemp H. Kernstine38, Hedy L. Kindler39, Lee M. Krug14, Kristiaan Nackaerts21, Harvey I. Pass40, David C. Rice22, Conrad Falkson5, Pier Luigi Filosso29, Giuseppe Giaccone41, Kazuya Kondo42, Marco Lucchi43, Meinoshin Okumura44, Eugene H. Blackstone27, F. Abad Cavaco, E. Ansótegui Barrera, J. Abal Arca, I. Parente Lamelas, A. Arnau Obrer45, R. Guijarro Jorge45, D. Ball6, G.K. Bascom46, A. I. Blanco Orozco, M. A. González Castro, M.G. Blum, D. Chimondeguy, V. Cvijanovic47, S. Defranchi48, B. de Olaiz Navarro, I. Escobar Campuzano2, I. Macía Vidueira2, E. Fernández Araujo49, F. Andreo García49, Kwun M. Fong, G. Francisco Corral, S. Cerezo González, J. Freixinet Gilart, L. García Arangüena, S. García Barajas50, P. Girard, Tuncay Göksel, M. T. González Budiño51, G. González Casaurrán50, J. A. Gullón Blanco, J. Hernández Hernández, H. Hernández Rodríguez, J. Herrero Collantes, M. Iglesias Heras, J. M. Izquierdo Elena, Erik Jakobsen, S. Kostas52, P. León Atance, A. Núñez Ares, M. Liao, M. Losanovscky, G. Lyons, R. Magaroles53, L. De Esteban Júlvez53, M. Mariñán Gorospe, Brian C. McCaughan15, Catherine J. Kennedy15, R. Melchor Íñiguez54, L. Miravet Sorribes, S. Naranjo Gozalo, C. Álvarez de Arriba, M. Núñez Delgado, J. Padilla Alarcón, J. C. Peñalver Cuesta, Jongsun Park16, H. Pass40, M. J. Pavón Fernández, Mara Rosenberg, Enrico Ruffini29, V. Rusch14, J. Sánchez de Cos Escuín, A. Saura Vinuesa, M. Serra Mitjans, Trond Eirik Strand, Dragan Subotic, S.G. Swisher22, Ricardo Mingarini Terra8, Charles R. Thomas33, Kurt G. Tournoy55, P. Van Schil23, M. Velasquez, Y.L. Wu, K. Yokoi 
Imperial College London1, University of Barcelona2, Keio University3, University of Duisburg-Essen4, Queen's University5, Peter MacCallum Cancer Centre6, University of Michigan7, University of São Paulo8, Yale University9, Northern General Hospital10, University of Caen Lower Normandy11, Fred Hutchinson Cancer Research Center12, University of Oxford13, Memorial Sloan Kettering Cancer Center14, University of Sydney15, Sungkyunkwan University16, Seoul National University17, Kyorin University18, University of Copenhagen19, Nippon Medical School20, Katholieke Universiteit Leuven21, University of Texas MD Anderson Cancer Center22, University of Antwerp23, Hyogo College of Medicine24, University of Western Australia25, Glenfield Hospital26, Cleveland Clinic27, Icahn School of Medicine at Mount Sinai28, University of Turin29, Université libre de Bruxelles30, Juntendo University31, National Cancer Research Institute32, Mayo Clinic33, University of Toronto34, Sinai Grace Hospital35, Netherlands Cancer Institute36, Hiroshima University37, City of Hope National Medical Center38, University of Chicago39, New York University40, Georgetown University41, University of Tokushima42, University of Pisa43, Osaka University44, University of Valencia45, Good Samaritan Hospital46, Military Medical Academy47, Fundación Favaloro48, Autonomous University of Barcelona49, Complutense University of Madrid50, University of Oviedo51, National and Kapodistrian University of Athens52, Rovira i Virgili University53, Autonomous University of Madrid54, Ghent University55
TL;DR: The methods used to evaluate the resultant Stage groupings and the proposals put forward for the 8th edition of the TNM Classification for lung cancer due to be published late 2016 are described.

2,826 citations

Journal ArticleDOI
24 Jan 2018-Nature
TL;DR: Continued research into new drugs and combination therapies is required to expand the clinical benefit to a broader patient population and to improve outcomes in NSCLC.
Abstract: Important advancements in the treatment of non-small cell lung cancer (NSCLC) have been achieved over the past two decades, increasing our understanding of the disease biology and mechanisms of tumour progression, and advancing early detection and multimodal care. The use of small molecule tyrosine kinase inhibitors and immunotherapy has led to unprecedented survival benefits in selected patients. However, the overall cure and survival rates for NSCLC remain low, particularly in metastatic disease. Therefore, continued research into new drugs and combination therapies is required to expand the clinical benefit to a broader patient population and to improve outcomes in NSCLC.

2,410 citations

Journal ArticleDOI
TL;DR: Prevention and early detection of lung cancer with an emphasis on lung cancer screening is discussed, and the importance of smoking prevention and cessation is acknowledged.

2,027 citations