scispace - formally typeset
Search or ask a question
Author

Kelsey J. Ramirez

Bio: Kelsey J. Ramirez is an academic researcher from National Renewable Energy Laboratory. The author has contributed to research in topics: Pseudomonas putida & Medicine. The author has an hindex of 9, co-authored 13 publications receiving 288 citations. Previous affiliations of Kelsey J. Ramirez include United States Department of Energy.

Papers
More filters
Journal ArticleDOI
19 Jun 2019-Joule
TL;DR: This work has engineered Pseudomonas putida KT2440 to convert these aromatic compounds to 15 catabolic intermediates that exhibit substantial chemical diversity and produce materials from three compounds to illustrate the potential for realizing performance-advantaged properties relative to petroleum-derived analogs.

115 citations

Journal ArticleDOI
TL;DR: This work suggests that the plant controls C-O and C-C bond content by regulating monomer transport during lignin biosynthesis, and indicates that additional factors beyond the monomeric composition of native lIGNin are important in developing a fundamental understanding of lign in biosynthesis.
Abstract: The ratio of syringyl (S) and guaiacyl (G) units in lignin has been regarded as a major factor in determining the maximum monomer yield from lignin depolymerization. This limit arises from the notion that G units are prone to C-C bond formation during lignin biosynthesis, resulting in less ether linkages that generate monomers. This study uses reductive catalytic fractionation (RCF) in flow-through reactors as an analytical tool to depolymerize lignin in poplar with naturally varying S/G ratios, and directly challenges the common conception that the S/G ratio predicts monomer yields. Rather, this work suggests that the plant controls C-O and C-C bond content by regulating monomer transport during lignin biosynthesis. Overall, our results indicate that additional factors beyond the monomeric composition of native lignin are important in developing a fundamental understanding of lignin biosynthesis. The ratio of syringyl (S) and guaiacyl (G) units in lignin has been regarded as a major factor in determining the maximum monomer yield. Here, the authors challenge this common conception using reductive catalytic fractionation in flow-through reactors as an analytical tool to depolymerize lignin in poplar with naturally varying S/G ratios.

106 citations

Journal ArticleDOI
TL;DR: This work proposes a mechanism for extracellular nutrient acquisition from aromatic compounds by soil bacteria, which holds promise for improving the efficiency of microbial lignin conversion and suggests that OMVs could potentially be useful tools for synthetic biology and biotechnological applications.
Abstract: Lignin is an abundant and recalcitrant component of plant cell walls. While lignin degradation in nature is typically attributed to fungi, growing evidence suggests that bacteria also catabolize this complex biopolymer. However, the spatiotemporal mechanisms for lignin catabolism remain unclear. Improved understanding of this biological process would aid in our collective knowledge of both carbon cycling and microbial strategies to valorize lignin to value-added compounds. Here, we examine lignin modifications and the exoproteome of three aromatic–catabolic bacteria: Pseudomonas putida KT2440, Rhodoccocus jostii RHA1, and Amycolatopsis sp. ATCC 39116. P. putida cultivation in lignin-rich media is characterized by an abundant exoproteome that is dynamically and selectively packaged into outer membrane vesicles (OMVs). Interestingly, many enzymes known to exhibit activity toward lignin-derived aromatic compounds are enriched in OMVs from early to late stationary phase, corresponding to the shift from bioavailable carbon to oligomeric lignin as a carbon source. In vivo and in vitro experiments demonstrate that enzymes contained in the OMVs are active and catabolize aromatic compounds. Taken together, this work supports OMV-mediated catabolism of lignin-derived aromatic compounds as an extracellular strategy for nutrient acquisition by soil bacteria and suggests that OMVs could potentially be useful tools for synthetic biology and biotechnological applications.

68 citations

Journal ArticleDOI
TL;DR: Adaptive evolution is employed to improve muconate production in strains incapable of producing 2-ketogluconate by P. putida in the context of gcd deletion and targeted engineering recapitulate improvements achieved by evolution.

65 citations

Journal ArticleDOI
14 Oct 2022-Science
TL;DR: This work shows that metal-catalyzed autoxidation depolymerizes comingled polymers into a mixture of oxygenated small molecules that are advantaged substrates for biological conversion, and engineer a robust soil bacterium to funnel these oxygenated compounds into a single exemplary chemical product.
Abstract: Mixed plastics waste represents an abundant and largely untapped feedstock for the production of valuable products. The chemical diversity and complexity of these materials, however, present major barriers to realizing this opportunity. In this work, we show that metal-catalyzed autoxidation depolymerizes comingled polymers into a mixture of oxygenated small molecules that are advantaged substrates for biological conversion. We engineer a robust soil bacterium, Pseudomonas putida, to funnel these oxygenated compounds into a single exemplary chemical product, either β-ketoadipate or polyhydroxyalkanoates. This hybrid process establishes a strategy for the selective conversion of mixed plastics waste into useful chemical products. Description Funneling mixed waste with microbes Current plastic recycling methods require sorting by chemical composition, a method that is expensive and results in products that are of lower quality and value than the starting plastic. If plastic waste could instead be converted to valuable chemical intermediates, then economical use of mixed waste as a feedstock might be feasible. Sullivan et al. developed a two-stage oxidation and biological funneling approach that can break down and reform mixtures of common consumer plastics (see the Perspective by Yan). The end products can be adjusted by metabolic engineering of the microbes in the second step, which should enable tailored conversion into various platform or specialty chemicals. —MAF Autoxidation and biological funneling converts mixed plastics to a single product.

63 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Combination of relevant factors and specific measurements gathering simultaneously structural and chemical information should help to develop robust and efficient LB conversion processes into bioproducts.
Abstract: Lignocellulosic biomass (LB) is an abundant and renewable resource from plants mainly composed of polysaccharides (cellulose and hemicelluloses) and an aromatic polymer (lignin). LB has a high potential as an alternative to fossil resources to produce second-generation biofuels and biosourced chemicals and materials without compromising global food security. One of the major limitations to LB valorisation is its recalcitrance to enzymatic hydrolysis caused by the heterogeneous multi-scale structure of plant cell walls. Factors affecting LB recalcitrance are strongly interconnected and difficult to dissociate. They can be divided into structural factors (cellulose specific surface area, cellulose crystallinity, degree of polymerization, pore size and volume) and chemical factors (composition and content in lignin, hemicelluloses, acetyl groups). Goal of this review is to propose an up-to-date survey of the relative impact of chemical and structural factors on biomass recalcitrance and of the most advanced techniques to evaluate these factors. Also, recent spectral and water-related measurements accurately predicting hydrolysis are presented. Overall, combination of relevant factors and specific measurements gathering simultaneously structural and chemical information should help to develop robust and efficient LB conversion processes into bioproducts.

342 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a set of guidelines for analysing critical data from lignin-first approaches, including feedstock analysis and process parameters, with the ambition of uniting the lignIN-first research community around a common set of reportable metrics, including fractionation efficiency, product yields, solvent mass balances, catalyst efficiency, and requirements for additional reagents such as reducing, oxidising, or capping agents.
Abstract: The valorisation of the plant biopolymer lignin is now recognised as essential to enabling the economic viability of the lignocellulosic biorefining industry. In this context, the “lignin-first” biorefining approach, in which lignin valorisation is considered in the design phase, has demonstrated the fullest utilisation of lignocellulose. We define lignin-first methods as active stabilisation approaches that solubilise lignin from native lignocellulosic biomass while avoiding condensation reactions that lead to more recalcitrant lignin polymers. This active stabilisation can be accomplished by solvolysis and catalytic conversion of reactive intermediates to stable products or by protection-group chemistry of lignin oligomers or reactive monomers. Across the growing body of literature in this field, there are disparate approaches to report and analyse the results from lignin-first approaches, thus making quantitative comparisons between studies challenging. To that end, we present herein a set of guidelines for analysing critical data from lignin-first approaches, including feedstock analysis and process parameters, with the ambition of uniting the lignin-first research community around a common set of reportable metrics. These guidelines comprise standards and best practices or minimum requirements for feedstock analysis, stressing reporting of the fractionation efficiency, product yields, solvent mass balances, catalyst efficiency, and the requirements for additional reagents such as reducing, oxidising, or capping agents. Our goal is to establish best practices for the research community at large primarily to enable direct comparisons between studies from different laboratories. The use of these guidelines will be helpful for the newcomers to this field and pivotal for further progress in this exciting research area.

320 citations

Journal ArticleDOI
01 Jun 2020
TL;DR: The molecular driving forces that shape the deconstruction landscape and the strategies for chemical functionalization are outlined and an outlook on further developments and the potential of these strategies to sustainably produce renewable-platform chemicals is offered.
Abstract: A central feature of most lignocellulosic-biomass-valorization strategies is the depolymerization of all its three major constituents: cellulose and hemicellulose to simple sugars, and lignin to phenolic monomers. However, reactive intermediates, generally resulting from dehydration reactions, can participate in undesirable condensation pathways during biomass deconstruction, which have posed fundamental challenges to commercial biomass valorization. Thus, new strategies specifically aim to suppress condensations of reactive intermediates, either avoiding their formation by functionalizing the native structure or intermediates or selectively transforming these intermediates into stable derivatives. These strategies have provided unforeseen upgrading pathways, products and process solutions. In this Review, we outline the molecular driving forces that shape the deconstruction landscape and describe the strategies for chemical functionalization. We then offer an outlook on further developments and the potential of these strategies to sustainably produce renewable-platform chemicals. Deconstructing plant-derived polymers into small molecules is necessary for biomass valorization but gives intermediates that undergo undesirable reactions. This Review describes how the intermediates can be converted into stable derivatives as renewable-platform chemicals.

173 citations

Journal ArticleDOI
TL;DR: A critical review of key advances in the identification of exact lignin structure subjected to various fractionation technologies is provided and the key roles of lignIn structures in depolymerization for unique functionalized products are demonstrated.

160 citations

Journal ArticleDOI
TL;DR: The present study systematically summarizes the far‐reaching and state‐of‐the‐art lignin valorization strategies during different stages, including conventional catalytic depolymerization of technical lign in, emerging reductive catalytic fractionation of protolignin, stabilization strategies to inhibit the undesired condensation reactions, and further catalytic upgrading of lignIn‐derived monomers.
Abstract: The efficient valorization of lignin could dictate the success of the 2nd generation biorefinery. Lignin, accounting for on average a third of the lignocellulosic biomass, is the most promising candidate for sustainable production of value-added phenolics. However, the structural alteration induced during lignin isolation is often depleting its potential for value-added chemicals. Recently, catalytic reductive depolymerization of lignin has appeared to be a promising and effective method for its valorization to obtain phenolic monomers. The present study systematically summarizes the far-reaching and state-of-the-art lignin valorization strategies during different stages, including conventional catalytic depolymerization of technical lignin, emerging reductive catalytic fractionation of protolignin, stabilization strategies to inhibit the undesired condensation reactions, and further catalytic upgrading of lignin-derived monomers. Finally, the potential challenges for the future researches on the efficient valorization of lignin and possible solutions are proposed.

157 citations