scispace - formally typeset
Search or ask a question
Author

Kemal Ugur

Bio: Kemal Ugur is an academic researcher from Nokia. The author has contributed to research in topics: Coding tree unit & Macroblock. The author has an hindex of 23, co-authored 74 publications receiving 2352 citations.


Papers
More filters
Journal ArticleDOI
Jani Lainema1, Frank Bossen2, Woo-Jin Han3, Min Jung-Hye4, Kemal Ugur1 
TL;DR: The design principles applied during the development of the new intra coding methods are discussed, the compression performance of the individual tools is analyzed, and the bitrate reduction provided by the HEVC intra coding over the H.264/advanced video coding reference is reported to be 22% on average and up to 36%.
Abstract: This paper provides an overview of the intra coding techniques in the High Efficiency Video Coding (HEVC) standard being developed by the Joint Collaborative Team on Video Coding (JCT-VC). The intra coding framework of HEVC follows that of traditional hybrid codecs and is built on spatial sample prediction followed by transform coding and postprocessing steps. Novel features contributing to the increased compression efficiency include a quadtree-based variable block size coding structure, block-size agnostic angular and planar prediction, adaptive pre- and postfiltering, and prediction direction-based transform coefficient scanning. This paper discusses the design principles applied during the development of the new intra coding methods and analyzes the compression performance of the individual tools. Computational complexity of the introduced intra prediction algorithms is analyzed both by deriving operational cycle counts and benchmarking an optimized implementation. Using objective metrics, the bitrate reduction provided by the HEVC intra coding over the H.264/advanced video coding reference is reported to be 22% on average and up to 36%. Significant subjective picture quality improvements are also reported when comparing the resulting pictures at fixed bitrate.

667 citations

Journal ArticleDOI
TL;DR: Multiview applications and solutions to support generic multiview as well as 3D services are introduced and cover a wide range of requirements for 3D video related to interface, transport of the MVC bitstreams, and MVC decoder resource management.
Abstract: Multiview video has gained a wide interest recently. The huge amount of data needed to be processed by multiview applications is a heavy burden for both transmission and decoding. The joint video team has recently devoted part of its effort to extend the widely deployed H.264/AVC standard to handle multiview video coding (MVC). The MVC extension of H.264/AVC includes a number of new techniques for improved coding efficiency, reduced decoding complexity, and new functionalities for multiview operations. MVC takes advantage of some of the interfaces and transport mechanisms introduced for the scalable video coding (SVC) extension of H.264/AVC, but the system level integration of MVC is conceptually more challenging as the decoder output may contain more than one view and can consist of any combination of the views with any temporal level. The generation of all the output views also requires careful consideration and control of the available decoder resources. In this paper, multiview applications and solutions to support generic multiview as well as 3D services are introduced. The proposed solutions, which have been adopted to the draft MVC specification, cover a wide range of requirements for 3D video related to interface, transport of the MVC bitstreams, and MVC decoder resource management. The features that have been introduced in MVC to support these solutions include marking of reference pictures, supporting for efficient view switching, structuring of the bitstream, signalling of view scalability supplemental enhancement information (SEI) and parallel decoding SEI.

262 citations

Journal ArticleDOI
TL;DR: The various components of the proposed block merging algorithm for HEVC are described and, using experimental evidence, their benefits in terms of coding efficiency are demonstrated.
Abstract: The joint development of the upcoming High Efficiency Video Coding (HEVC) standard by ITU-T Video Coding Experts Group and ISO/IEC Moving Picture Experts Group marks a new step in video compression capability. In technical terms, HEVC is a hybrid video-coding approach using quadtree-based block partitioning together with motion-compensated prediction. Even though a high degree of adaptability is achieved by quadtree-based block partitioning, this approach has certain intrinsic drawbacks, which may result in redundant sets of motion parameters being transmitted. Previous work has shown that those redundancies can effectively be removed by merging the leafs of a particular quadtree structure. Following this concept, a block merging algorithm for HEVC is now proposed. This algorithm generates a single motion parameter set for a whole region of contiguous motion-compensated blocks. In this paper, we describe the various components of the proposed block merging algorithm and, using experimental evidence, demonstrate their benefits in terms of coding efficiency.

179 citations

Journal ArticleDOI
TL;DR: Coding efficiency improvements are achieved with lower complexity than the H.264/AVC Baseline Profile, particularly suiting the proposal for high resolution, high quality applications in resource-constrained environments.
Abstract: This paper describes a low complexity video codec with high coding efficiency. It was proposed to the high efficiency video coding (HEVC) standardization effort of moving picture experts group and video coding experts group, and has been partially adopted into the initial HEVC test model under consideration design. The proposal utilizes a quadtree-based coding structure with support for macroblocks of size 64 × 64, 32 × 32, and 16 × 16 pixels. Entropy coding is performed using a low complexity variable length coding scheme with improved context adaptation compared to the context adaptive variable length coding design in H.264/AVC. The proposal's interpolation and deblocking filter designs improve coding efficiency, yet have low complexity. Finally, intra-picture coding methods have been improved to provide better subjective quality than H.264/AVC. The subjective quality of the proposed codec has been evaluated extensively within the HEVC project, with results indicating that similar visual quality to H.264/AVC High Profile anchors is achieved, measured by mean opinion score, using significantly fewer bits. Coding efficiency improvements are achieved with lower complexity than the H.264/AVC Baseline Profile, particularly suiting the proposal for high resolution, high quality applications in resource-constrained environments.

156 citations

Patent
08 Jan 2008
TL;DR: In this article, a predefined base filter has fixed coefficient values and a prediction signal representative of the difference between a video frame and a reference image is calculated from the reference image based on a pre-defined base filter and motion estimation performed on the video frame.
Abstract: In digital video image encoding and decoding, a filter type is selected based on symmetrical properties of the images and coefficient values of an interpolation filter are calculated based on the selected filter type. Coefficient values, filter tap-length and selected filter-type are provided in the encoded video data. Coefficient values are also calculated based on a prediction signal representative of the different between a video frame and a reference image. The prediction signal is calculated from the reference image based on a predefined base filter and motion estimation performed on the video frame. The predefined base filter has fixed coefficient values. Coefficient values are selected from interpolation of pixel values in a selected image segment in the video frame. Symmetry properties of images can be a vertical symmetry, a horizontal symmetry and a combination thereof, so that only a portion of the filter coefficients are coded.

95 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The main goal of the HEVC standardization effort is to enable significantly improved compression performance relative to existing standards-in the range of 50% bit-rate reduction for equal perceptual video quality.
Abstract: High Efficiency Video Coding (HEVC) is currently being prepared as the newest video coding standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The main goal of the HEVC standardization effort is to enable significantly improved compression performance relative to existing standards-in the range of 50% bit-rate reduction for equal perceptual video quality. This paper provides an overview of the technical features and characteristics of the HEVC standard.

7,383 citations

Patent
14 Jun 2016
TL;DR: Newness and distinctiveness is claimed in the features of ornamentation as shown inside the broken line circle in the accompanying representation as discussed by the authors, which is the basis for the representation presented in this paper.
Abstract: Newness and distinctiveness is claimed in the features of ornamentation as shown inside the broken line circle in the accompanying representation.

1,500 citations

Journal ArticleDOI
TL;DR: The results of subjective tests for WVGA and HD sequences indicate that HEVC encoders can achieve equivalent subjective reproduction quality as encoder that conform to H.264/MPEG-4 AVC when using approximately 50% less bit rate on average.
Abstract: The compression capability of several generations of video coding standards is compared by means of peak signal-to-noise ratio (PSNR) and subjective testing results. A unified approach is applied to the analysis of designs, including H.262/MPEG-2 Video, H.263, MPEG-4 Visual, H.264/MPEG-4 Advanced Video Coding (AVC), and High Efficiency Video Coding (HEVC). The results of subjective tests for WVGA and HD sequences indicate that HEVC encoders can achieve equivalent subjective reproduction quality as encoders that conform to H.264/MPEG-4 AVC when using approximately 50% less bit rate on average. The HEVC design is shown to be especially effective for low bit rates, high-resolution video content, and low-delay communication applications. The measured subjective improvement somewhat exceeds the improvement measured by the PSNR metric.

1,279 citations

Journal ArticleDOI
TL;DR: Overall, the complexity of HEVC decoders does not appear to be significantly different from that of H.264/AVC decoder; this makes HEVC decoding in software very practical on current hardware.
Abstract: Advances in video compression technology have been driven by ever-increasing processing power available in software and hardware. The emerging High Efficiency Video Coding (HEVC) standard aims to provide a doubling in coding efficiency with respect to the H.264/AVC high profile, delivering the same video quality at half the bit rate. In this paper, complexity-related aspects that were considered in the standardization process are described. Furthermore, profiling of reference software and optimized software gives an indication of where HEVC may be more complex than its predecessors and where it may be simpler. Overall, the complexity of HEVC decoders does not appear to be significantly different from that of H.264/AVC decoders; this makes HEVC decoding in software very practical on current hardware. HEVC encoders are expected to be several times more complex than H.264/AVC encoders and will be a subject of research in years to come.

747 citations

Journal ArticleDOI
31 Jan 2011
TL;DR: An overview of the algorithmic design used for extending H.264/MPEG-4 AVC towards MVC is provided and a summary of the coding performance achieved by MVC for both stereo- and multiview video is provided.
Abstract: Significant improvements in video compression capability have been demonstrated with the introduction of the H.264/MPEG-4 advanced video coding (AVC) standard. Since developing this standard, the Joint Video Team of the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG) has also standardized an extension of that technology that is referred to as multiview video coding (MVC). MVC provides a compact representation for multiple views of a video scene, such as multiple synchronized video cameras. Stereo-paired video for 3-D viewing is an important special case of MVC. The standard enables inter-view prediction to improve compression capability, as well as supporting ordinary temporal and spatial prediction. It also supports backward compatibility with existing legacy systems by structuring the MVC bitstream to include a compatible “base view.” Each other view is encoded at the same picture resolution as the base view. In recognition of its high-quality encoding capability and support for backward compatibility, the stereo high profile of the MVC extension was selected by the Blu-Ray Disc Association as the coding format for 3-D video with high-definition resolution. This paper provides an overview of the algorithmic design used for extending H.264/MPEG-4 AVC towards MVC. The basic approach of MVC for enabling inter-view prediction and view scalability in the context of H.264/MPEG-4 AVC is reviewed. Related supplemental enhancement information (SEI) metadata is also described. Various “frame compatible” approaches for support of stereo-view video as an alternative to MVC are also discussed. A summary of the coding performance achieved by MVC for both stereo- and multiview video is also provided. Future directions and challenges related to 3-D video are also briefly discussed.

683 citations