scispace - formally typeset
Search or ask a question
Author

Kemin Zhou

Bio: Kemin Zhou is an academic researcher from Southwest Jiaotong University. The author has contributed to research in topics: Robust control & Robustness (computer science). The author has an hindex of 38, co-authored 169 publications receiving 15469 citations. Previous affiliations of Kemin Zhou include California Institute of Technology & Louisiana State University.


Papers
More filters
Journal Article

4,506 citations

Book
05 Oct 1997
TL;DR: In this article, the authors introduce linear algebraic Riccati Equations and linear systems with Ha spaces and balance model reduction, and Ha Loop Shaping, and Controller Reduction.
Abstract: 1. Introduction. 2. Linear Algebra. 3. Linear Systems. 4. H2 and Ha Spaces. 5. Internal Stability. 6. Performance Specifications and Limitations. 7. Balanced Model Reduction. 8. Uncertainty and Robustness. 9. Linear Fractional Transformation. 10. m and m- Synthesis. 11. Controller Parameterization. 12. Algebraic Riccati Equations. 13. H2 Optimal Control. 14. Ha Control. 15. Controller Reduction. 16. Ha Loop Shaping. 17. Gap Metric and ...u- Gap Metric. 18. Miscellaneous Topics. Bibliography. Index.

3,471 citations

Journal ArticleDOI
TL;DR: In this paper, the problem of robustly stabilizing a linear uncertain system is considered with emphasis on the interplay between the time-domain results on the quadratic stabilization of uncertain systems and the frequency domain results on H/sup infinity / optimization.
Abstract: The problem of robustly stabilizing a linear uncertain system is considered with emphasis on the interplay between the time-domain results on the quadratic stabilization of uncertain systems and the frequency-domain results on H/sup infinity / optimization. A complete solution to a certain quadratic stabilization problem in which uncertainty enters both the state and the input matrices of the system is given. Relations between these robust stabilization problems and H/sup infinity / control theory are explored. It is also shown that in a number of cases, if a robust stabilization problem can be solved via Lyapunov methods, then it can be also be solved via H/sup infinity / control theory-based methods. >

1,464 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered the general four-block H ∞ optimal control problem with the assumption that system states are available for feedback and showed that the optimal norm of the closed loop transfer function over all linear constant, i.e., non-dynamic, stabilizing state feedback laws can be characterized via an algebraic Riccati equation.

463 citations

Journal ArticleDOI
TL;DR: In this article, robust stabilization of a class of linear systems with norm-bounded time-varying uncertainties is considered, and it is shown that for this class of uncertain systems quadratic stabilizability via linear control is equivalent to the existence of a positive definite symmetric matrix solution to a (parameter-dependent) Riccati equation.

457 citations


Cited by
More filters
Book
01 Jan 1994
TL;DR: In this paper, the authors present a brief history of LMIs in control theory and discuss some of the standard problems involved in LMIs, such as linear matrix inequalities, linear differential inequalities, and matrix problems with analytic solutions.
Abstract: Preface 1. Introduction Overview A Brief History of LMIs in Control Theory Notes on the Style of the Book Origin of the Book 2. Some Standard Problems Involving LMIs. Linear Matrix Inequalities Some Standard Problems Ellipsoid Algorithm Interior-Point Methods Strict and Nonstrict LMIs Miscellaneous Results on Matrix Inequalities Some LMI Problems with Analytic Solutions 3. Some Matrix Problems. Minimizing Condition Number by Scaling Minimizing Condition Number of a Positive-Definite Matrix Minimizing Norm by Scaling Rescaling a Matrix Positive-Definite Matrix Completion Problems Quadratic Approximation of a Polytopic Norm Ellipsoidal Approximation 4. Linear Differential Inclusions. Differential Inclusions Some Specific LDIs Nonlinear System Analysis via LDIs 5. Analysis of LDIs: State Properties. Quadratic Stability Invariant Ellipsoids 6. Analysis of LDIs: Input/Output Properties. Input-to-State Properties State-to-Output Properties Input-to-Output Properties 7. State-Feedback Synthesis for LDIs. Static State-Feedback Controllers State Properties Input-to-State Properties State-to-Output Properties Input-to-Output Properties Observer-Based Controllers for Nonlinear Systems 8. Lure and Multiplier Methods. Analysis of Lure Systems Integral Quadratic Constraints Multipliers for Systems with Unknown Parameters 9. Systems with Multiplicative Noise. Analysis of Systems with Multiplicative Noise State-Feedback Synthesis 10. Miscellaneous Problems. Optimization over an Affine Family of Linear Systems Analysis of Systems with LTI Perturbations Positive Orthant Stabilizability Linear Systems with Delays Interpolation Problems The Inverse Problem of Optimal Control System Realization Problems Multi-Criterion LQG Nonconvex Multi-Criterion Quadratic Problems Notation List of Acronyms Bibliography Index.

11,085 citations

Journal ArticleDOI
05 Mar 2007
TL;DR: A theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees is provided.
Abstract: This paper provides a theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees. An overview of basic concepts of information consensus in networks and methods of convergence and performance analysis for the algorithms are provided. Our analysis framework is based on tools from matrix theory, algebraic graph theory, and control theory. We discuss the connections between consensus problems in networked dynamic systems and diverse applications including synchronization of coupled oscillators, flocking, formation control, fast consensus in small-world networks, Markov processes and gossip-based algorithms, load balancing in networks, rendezvous in space, distributed sensor fusion in sensor networks, and belief propagation. We establish direct connections between spectral and structural properties of complex networks and the speed of information diffusion of consensus algorithms. A brief introduction is provided on networked systems with nonlocal information flow that are considerably faster than distributed systems with lattice-type nearest neighbor interactions. Simulation results are presented that demonstrate the role of small-world effects on the speed of consensus algorithms and cooperative control of multivehicle formations

9,715 citations

Book
17 Aug 1995
TL;DR: This paper reviewed the history of the relationship between robust control and optimal control and H-infinity theory and concluded that robust control has become thoroughly mainstream, and robust control methods permeate robust control theory.
Abstract: This paper will very briefly review the history of the relationship between modern optimal control and robust control. The latter is commonly viewed as having arisen in reaction to certain perceived inadequacies of the former. More recently, the distinction has effectively disappeared. Once-controversial notions of robust control have become thoroughly mainstream, and optimal control methods permeate robust control theory. This has been especially true in H-infinity theory, the primary focus of this paper.

6,945 citations

Book
01 Jan 1996
TL;DR: This book presents a rigorous, yet easily readable, introduction to the analysis and design of robust multivariable control systems and provides the reader with insights into the opportunities and limitations of feedback control.
Abstract: From the Publisher: This is a book on practical feedback control and not on system theory in general. Feedback is used in control systems to change the dynamics of the system and to reduce the sensitivity of the system to both signal and model uncertainty. The book presents a rigorous, yet easily readable, introduction to the analysis and design of robust multivariable control systems. It provides the reader with insights into the opportunities and limitations of feedback control. Its objective is to enable the engineer to design real control systems. Important topics are: extensions and classical frequency-domain methods to multivariable systems, analysis of directions using the singular value decomposition, performance limitations and input-output controllability analysis, model uncertainty and robustness including the structured singular value, control structure design, and methods for controller synthesis and model reduction. Numerous worked examples, exercises and case studies, which make frequent use of MATLAB, are included. MATLAB files for examples and figures, solutions to selected exercises, extra problems and linear state-space models for the case studies are available on the Internet.

6,279 citations

Journal ArticleDOI
TL;DR: In this article, simple state-space formulas are derived for all controllers solving the following standard H/sub infinity / problem: for a given number gamma > 0, find all controllers such that the H/ sub infinity / norm of the closed-loop transfer function is (strictly) less than gamma.
Abstract: Simple state-space formulas are derived for all controllers solving the following standard H/sub infinity / problem: For a given number gamma >0, find all controllers such that the H/sub infinity / norm of the closed-loop transfer function is (strictly) less than gamma . It is known that a controller exists if and only if the unique stabilizing solutions to two algebraic Riccati equations are positive definite and the spectral radius of their product is less than gamma /sup 2/. Under these conditions, a parameterization of all controllers solving the problem is given as a linear fractional transformation (LFT) on a contractive, stable, free parameter. The state dimension of the coefficient matrix for the LFT, constructed using the two Riccati solutions, equals that of the plant and has a separation structure reminiscent of classical LQG (i.e. H/sub 2/) theory. This paper is intended to be of tutorial value, so a standard H/sub 2/ solution is developed in parallel. >

5,272 citations