Author
Ken Mori
Bio: Ken Mori is an academic researcher from Kyushu University. The author has contributed to research in topics: Water quality & Aquatic plant. The author has an hindex of 7, co-authored 59 publications receiving 194 citations.
Papers published on a yearly basis
Papers
More filters
TL;DR: In this article, a lysimeter experiment was conducted to examine the effects of plastic film mulching on the leaching rate of nitrate nitrogen (NO3-N) from chemical fertilizer that was applied to an upland field that had been converted from paddy rice production.
Abstract: A lysimeter experiment was conducted to examine the effects of plastic film mulching on the leaching rate of nitrate nitrogen (NO3-N) from chemical fertilizer that was applied to an upland field that had been converted from paddy rice production. Leaching was monitored in two lysimeters filled with sandy loam soil, which contained low soil organic matter content, under different surface mulch conditions. One was mulched only on the ridge (ridge-mulch treatment) and another one was mulched fully, including the furrow, with black plastic film (full-mulch treatment). Chemical fertilizer was mixed into the top 0.2 m of soil in the two lysimeters before installing the mulch. After transplanting broccoli, the amount of subsurface discharge water and the NO3-N concentrations in the discharge water were measured every day. Larger NO3-N discharges occurred in the ridge-mulch treatment for three days after heavy rainfalls in which cumulative precipitation exceeded 10 mm, and the daily NO3-N load was twice as large as the full-mulch treatment. The differences in the amount of subsurface discharge water and NO3-N discharged between treatments were not significant when there was no rainfall. Cumulative NO3-N loads for the ridge- and full-mulch treatment during the last month of the experimental period were 0.246 and 0.195 g m−2, respectively. The effect of mulching on the reduction of NO3-N discharge rate was higher for the full-mulch treatment. This result showed that a plastic-film mulching system would be effective as an appropriate fertilizer management to reduce nitrate-leaching losses.
27 citations
TL;DR: In this paper, the authors analyzed the diurnal stratification cycles in the Shikinawa Lake, a study area in Fukuoka prefecture, Japan, and found that wind speeds and directions played an important role in the thermal mixing in the lake.
Abstract: Thermal stratification is one of the important features in closed water bodies, which primarily depend on meteorological conditions, and has strong impact on the ecological environment in lakes or reservoirs. Data monitored in 3 days were analyzed for factors that affect heat mixing processes to examine the diurnal stratification cycles in the Shikinawa Lake, a study area in Fukuoka prefecture, Japan. We found that wind speeds and directions played an important role in the thermal mixing in the lake. High solar heating mainly caused stratification state, but with less effect under stronger wind action. Development of mixed layer depth in a natural lake due to wind-induced flow and thermal convection were calculated. Functional relationships between entrainment rate and Richardson number or Wedderburn number were found and represented in this paper. Besides, heats exchanged at the air–water interface and energy stored in the water column were also analyzed and discussed.
16 citations
TL;DR: In this paper, a two-dimensional, unsteady, laterally averaged model for simulating the circulation and water quality in closed water bodies is presented, which can be extended to simulate the circulation of closed lakes and reservoirs.
Abstract: In closed water bodies, such as reservoirs and lakes, where the exchange with external waters is usually small, the wind-induced flow significantly affects their water quality by mixing the surface waters and transfering heat down through the water column. However, the circulation caused by wind acting on the water surface can be influenced by the excessive growth of aquatic plants in summer, which may make their water quality to become worse. Therefore, understanding the response of the closed water bodies to winds acting on the water surface is of great significance in examining and maintaining their water quality in good condition. With that significance, this research has been done to build a two-dimensional, unsteady, laterally averaged model for simulating the circulation and water quality in closed water bodies. To verify the model, the Tabiishidani reservoir located in Sasaguri town, Fukuoka prefecture, Japan, was chosen as a case study. To illustrate the methodology of the research, water temperature of the reservoir was chosen to calibrate the model. After calibration, the model was applied to simulate water temperature in the Tabiishidani reservoir under different patterns of meteorology. The results of simulation clarified the change in water temperature distribution along the depth of the reservoir under the different patterns of meteorology. This research shows that the model can be a suitable tool for simulating the circulation and water temperature in closed water bodies. Moreover, the model can be extended to simulate the circulation and any variable of water quality in closed water bodies with the coverage of aquatic plants on the water surface.
15 citations
14 citations
TL;DR: In this article, the effect of aquatic plants on the turbulent flow from a mechanical disturbance in a closed water area was investigated, and the presence of floating and submerged plants had a significant effect on the scale of turbulent entrainment.
Abstract: It has recently been proposed that water purification could be performed using aquatic plants, since they absorb nutrient salts. The behavior of a substance in a closed water area is affected by turbulent flows from wind-induced flow, which is a mechanical disturbance, and convective flow, which is a thermal disturbance. In a closed density stratified water area, wind-induced flow gives rise to the entrainment phenomenon at the density interface. This phenomenon, which is based on mixing between the upper and lower water layers, lowers the density interface and so affects the water quality. We experimentally investigated the effect of aquatic plants on the turbulent flow from a mechanical disturbance in the closed water area. Results indicated that the presence of floating and submerged plants had a significant effect on the scale of the turbulent entrainment, and that the entrainment velocity depended on the overall Richardson number to the power of −3/2.
12 citations
Cited by
More filters
TL;DR: Future interdisciplinary research should gain a deeper understanding of the incentives for farmers and public perception from both a psychological and economic perspective in order to develop new support strategies for the transition into a more environment-friendly food production.
Abstract: Plastic mulching has become a globally applied agricultural practice for its instant economic benefits such as higher yields, earlier harvests, improved fruit quality and increased water-use efficiency. However, knowledge of the sustainability of plastic mulching remains vague in terms of both an environmental and agronomic perspective. This review critically discusses the current understanding of the environmental impact of plastic mulch use by linking knowledge of agricultural benefits and research on the life cycle of plastic mulches with direct and indirect implications for long-term soil quality and ecosystem services. Adverse effects may arise from plastic additives, enhanced pesticide runoff and plastic residues likely to fragment into microplastics but remaining chemically intact and accumulating in soil where they can successively sorb agrochemicals. The quantification of microplastics in soil remains challenging due to the lack of appropriate analytical techniques. The cost and effort of recovering and recycling used mulching films may offset the aforementioned benefits in the long term. However, comparative and long-term agronomic assessments have not yet been conducted. Furthermore, plastic mulches have the potential to alter soil quality by shifting the edaphic biocoenosis (e.g. towards mycotoxigenic fungi), accelerate C/N metabolism eventually depleting soil organic matter stocks, increase soil water repellency and favour the release of greenhouse gases. A substantial process understanding of the interactions between the soil microclimate, water supply and biological activity under plastic mulches is still lacking but required to estimate potential risks for long-term soil quality. Currently, farmers mostly base their decision to apply plastic mulches rather on expected short-term benefits than on the consideration of long-term consequences. Future interdisciplinary research should therefore gain a deeper understanding of the incentives for farmers and public perception from both a psychological and economic perspective in order to develop new support strategies for the transition into a more environment-friendly food production.
859 citations
TL;DR: Preliminary results of the efforts to develop a modeling framework that synthesizes much of this previous work are presented, to identify relationships between behavioral parameters and group-level statistics.
Abstract: Heterogeneous, "aggregated" patterns in the spatial distributions of individuals are almost universal across living organisms, from bacteria to higher vertebrates. Whereas specific features of aggregations are often visually striking to human eyes, a heuristic analysis based on human vision is usually not sufficient to answer fundamental questions about how and why organisms aggregate. What are the individual-level behavioral traits that give rise to these features? When qualitatively similar spatial patterns arise from purely physical mechanisms, are these patterns in organisms biologically significant, or are they simply epiphenomena that are likely characteristics of any set of interacting autonomous individuals? If specific features of spatial aggregations do confer advantages or disadvantages in the fitness of group members, how has evolution operated to shape individual behavior in balancing costs and benefits at the individual and group levels? Mathematical models of social behaviors such as schooling in fishes provide a promising avenue to address some of these questions. However, the literature on schooling models has lacked a common framework to objectively and quantitatively characterize relationships between individual-level behaviors and group-level patterns. In this paper, we briefly survey similarities and differences in behavioral algorithms and aggregation statistics among existing schooling models. We present preliminary results of our efforts to develop a modeling framework that synthesizes much of this previous work, and to identify relationships between behavioral parameters and group-level statistics.
661 citations
TL;DR: In this paper, the effects of plastic mulching in ridges and furrows for varying durations on yield and water use efficiency (WUE) in potato were investigated in rainfed areas of north-western China in 2009 and 2010.
Abstract: Effects of plastic mulching in ridges and furrows for varying durations on yield and water use efficiency (WUE) in potato were investigated in rainfed areas of north-western China in 2009 and 2010. The experiment comprised four mulched treatments (M50, M65, M80/85, and Mw – indicating plastic film mulch for 50, 65, and 80/85 d after sowing, and whole growth season, respectively – after which mulch in furrows was removed) and a non-mulched control. The results showed that film mulching warmed topsoil and increased topsoil water content. The daily mean topsoil temperature in mulched plots was 2.5–3.2 °C higher than that in controls during the early growing season (sowing–emergence), the difference became less as the plant canopy grew; on some days later in the season, the difference was even negative (i.e. the topsoil temperature in mulched was lower than in control plots). Seedlings under mulching emerged 8.1–11.7 d earlier than those in controls due to the increased topsoil temperature and moisture in the early season. Mulching also prolonged the duration from seedling to maturity by 0.7–15.0 d and significantly increased plant height, leaf area index, and dry matter. Compared to non-mulched plots, yields in mulched plots increased by 33.9–92.5% and 62.9–77.8% in 2009 and 2010, respectively, and corresponding WUEs improved by 41.4–112.6% and 45.9–70.6%. Both tuber yield and WUE were highest in M65. The data indicate that mulching for about 65 d after sowing was ideal to optimize soil moisture and soil temperature and in turn to improve potato productivity and WUE in this semi-arid rainfed region.
196 citations
TL;DR: A multi-dimensional state space where several emergent property statistics are represented along the axes is proposed, and certain 'preferred' ranges of state space within which animal groups tend to localize, and in which they can sustain distinct types of regular architecture are suggested.
Abstract: Polarity, group velocity, and inter-individual spacing are characteristics of fish schools that strongly affect individual school members. However, these characteristics are group-level 'emergent properties': collective outcomes of behavioral interactions among members, not under direct control of any single member. The relationships between members' behaviors and the emergent group properties they produce are complex and poorly understood. In this study, we quantified 3D trajectories of all individual fish within 4- and 8-fish populations of Danio aequipinnatus, using stereo videography and a computerized tracking algorithm. We compared group polarity, group speed, and mean nearest-neighbor distances of schools within these populations to a simulation model that explored how fish responded to attraction/repulsion, alignment and random forces. Real fish exhibited a high degree of temporal variability in both polarity and group speed. Polarity and speed of simulated schools depended very strongly on the strength of the alignment force. Time-averaged polarity of real fish schools was most similar to simulated schools when alignment force was 1 to 5 % of the attraction/repulsion force. For both real and simulated fish, a clear relationship existed between group speed and polarity: polarized groups were faster than non-polarized groups. We propose a multi-dimensional state space where several emergent property statistics are represented along the axes, and suggest certain 'preferred' ranges of state space within which animal groups tend to localize, and in which they can sustain distinct types of regular architecture.
189 citations