scispace - formally typeset
Search or ask a question
Author

Kenji Kanekiyo

Bio: Kenji Kanekiyo is an academic researcher from Aino University. The author has contributed to research in topics: Transplantation & Spinal cord. The author has an hindex of 8, co-authored 10 publications receiving 167 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Together, branched O-mannosyl glycans in the corpus callosum in the brain are a necessary component of remyelination inhibition in the cuprizone-induced demyelinations model, suggesting that modulation of O- Mannosyl glycan glycans is a likely candidate for therapeutic strategies.
Abstract: In demyelinating diseases such as multiple sclerosis, a critical problem is failure of remyelination, which is important for protecting axons against degeneration and restoring conduction deficits. However, the underlying mechanism of demyelination/remyelination remains unclear. N-acetylglucosaminyltransferase-IX (GnT-IX; also known as GnT-Vb) is a brain-specific glycosyltransferase that catalyzes the branched formation of O-mannosyl glycan structures. O-Mannosylation of α-dystroglycan is critical for its function as an extracellular matrix receptor, but the biological significance of its branched structures, which are exclusively found in the brain, is unclear. In this study, we found that GnT-IX formed branched O-mannosyl glycans on receptor protein tyrosine phosphatase β (RPTPβ) in vivo. Since RPTPβ is thought to play a regulatory role in demyelinating diseases, GnT-IX-deficient mice were subjected to cuprizone-induced demyelination. Cuprizone feeding for 8 weeks gradually promoted demyelination in wild-type mice. In GnT-IX-deficient mice, the myelin content in the corpus callosum was reduced after 4 weeks of treatment, but markedly increased at 8 weeks, suggesting enhanced remyelination under GnT-IX deficiency. Furthermore, astrocyte activation in the corpus callosum of GnT-IX-deficient mice was significantly attenuated, and an oligodendrocyte cell lineage analysis indicated that more oligodendrocyte precursor cells differentiated into mature oligodendrocytes. Together, branched O-mannosyl glycans in the corpus callosum in the brain are a necessary component of remyelination inhibition in the cuprizone-induced demyelination model, suggesting that modulation of O-mannosyl glycans is a likely candidate for therapeutic strategies.

57 citations

Journal ArticleDOI
TL;DR: Activation of the intrinsic ability of the spinal cord to regenerate by the injection of neurotrophic factors such as BMSC-CM is considered to be a safe and preferable method for the clinical treatment of SCI.
Abstract: Bone marrow stromal cells (BMSCs) have been studied for the treatment of spinal cord injury (SCI). In previous studies, we showed that the transplantation of BMSCs, even though they disappeared from the host spinal cord within 1-3 weeks after transplantation, improved locomotor behaviors and promoted axonal regeneration. This result led to the hypothesis that BMSCs might release some neurotrophic factors effective for the treatment of SCI. The present study examined this by injecting the conditioned medium (CM) of BMSCs to treat SCI in rats. The spinal cord was contusion-injured, followed immediately by continuous injection for 2 weeks of the CM of BMSCs through the cerebrospinal fluid via the 4th ventricle using an Alzet osmotic pump. Locomotor behaviors evaluated by the Basso-Beattie-Bresnahan score were markedly improved in the CM-injection group, compared with the control group, at 1 to 4 weeks post-injection. The contusion-injured site of the spinal cord was identified as an astrocyte-devoid area, which contained no astrocytes but was filled with collagen matrices and empty cavities of various sizes. Collagen matrices contained type I collagen and laminin. Numerous axons extended through the collagen matrices of the astrocyte-devoid area. Axons were surrounded by Schwann cells, exhibiting the same morphological characteristics as peripheral nerve fibers. The density of axons extending through the astrocyte-devoid area was higher in the CM-injection group, compared with the control group. CM injection had beneficial effects on locomotor improvements and tissue repair, including axonal regeneration, meaning that the BMSC-CM stimulated the intrinsic ability of the spinal cord to regenerate. Activation of the intrinsic ability of the spinal cord to regenerate by the injection of neurotrophic factors such as BMSC-CM is considered to be a safe and preferable method for the clinical treatment of SCI.

32 citations

Journal ArticleDOI
TL;DR: The existence of an endogenous inhibitory factor for GnT-IX that functions as a key regulator for Gnt-IX enzymatic activity in Neuro2a (N2a) cells is demonstrated and a novel regulatory system for the cellular glycosylation process is proposed.

31 citations

Journal ArticleDOI
TL;DR: The results showed that although tissue recoveries were similar between single and multiple injection, the multiple injection of BMNCs was more beneficial for locomotor improvement than single injection for the treatment of SCI.
Abstract: The effects of multiple injection of bone marrow mononuclear cells (BMNCs) on spinal cord injury (SCI) were compared with those of single injection in rats. BMNCs separated by density-gradient centrifugation from a bone marrow perfusate were injected three times (once weekly) through the cerebrospinal fluid (CSF) via the fourth ventricle, and the locomotor improvement and tissue recovery, including axonal regeneration, were compared with those of single injection. While the single-injection group showed a steep elevation of the Basso-Beattie-Bresnahan (BBB) score 1 week after transplantation, the multiple-injection group maintained a similar steep elevation for 2 weeks after transplantation, and the BBB scores of the multiple-injection group remained thereafter at a level approximately 2-3 points higher than those of the single-injection group until the end of the experiment. There were significant differences between the single- and multiple-injection groups at 3, 4, and 8 weeks after transplantation. The difference in BBB scores at 8 weeks after transplantation suggested that there was a marked difference in the quality of locomotor behaviors between the single-and multiple-injection groups at this stage. An extensive outgrowth of regenerating axons through the astrocyte-devoid areas and a marked reduction of cavity formation were found in both the single- and multiple-injection groups. There were, however, no significant differences in the density of regenerating axons or volumes of cavities between the single- and multiple-injection groups. These results showed that although tissue recoveries were similar between single and multiple injection, the multiple injection of BMNCs was more beneficial for locomotor improvement than single injection for the treatment of SCI. Considering the technically simple and low-cost procedures for the preparation and injection of BMNCs, multiple injection of BMNCs by lumbar puncture has an advantage over single injection on clinical application.

17 citations

Journal ArticleDOI
TL;DR: It is suggested that BMSCs and CPECs secret neurotrophic factors that promote tissue repair of the spinal cord, including axonal regeneration and reduced cavity formation, promotes "intrinsic" ability ofThe spinal cord to regenerate.

16 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The dual effector function of the immune system which tightly controls demyelination by effective induction of oligodendrocyte apoptosis, but in contrast also paves the way for fast and efficient remyelinated by the secretion of neurotrophic factors and the clearance of cellular and myelinic debris is described.

318 citations

Book ChapterDOI
TL;DR: In this paper, a review of glycan structures, their biosynthetic glycosyltransferases, and their genes in relation to their biological significance and involvement in cancer, especially cancer biomarkers, epithelial-mesenchymal transition, cancer progression and metastasis, and therapeutics.
Abstract: Glycosylation is catalyzed by various glycosyltransferase enzymes which are mostly located in the Golgi apparatus in cells. These enzymes glycosylate various complex carbohydrates such as glycoproteins, glycolipids, and proteoglycans. The enzyme activity of glycosyltransferases and their gene expression are altered in various pathophysiological situations including cancer. Furthermore, the activity of glycosyltransferases is controlled by various factors such as the levels of nucleotide sugars, acceptor substrates, nucleotide sugar transporters, chaperons, and endogenous lectin in cancer cells. The glycosylation results in various functional changes of glycoproteins including cell surface receptors and adhesion molecules such as E-cadherin and integrins. These changes confer the unique characteristic phenotypes associated with cancer cells. Therefore, glycans play key roles in cancer progression and treatment. This review focuses on glycan structures, their biosynthetic glycosyltransferases, and their genes in relation to their biological significance and involvement in cancer, especially cancer biomarkers, epithelial-mesenchymal transition, cancer progression and metastasis, and therapeutics. Major N-glycan branching structures which are directly related to cancer are β1,6-GlcNAc branching, bisecting GlcNAc, and core fucose. These structures are enzymatic products of glycosyltransferases, GnT-V, GnT-III, and Fut8, respectively. The genes encoding these enzymes are designated as MGAT5 (Mgat5), MGAT3 (Mgat3), and FUT8 (Fut8) in humans (mice in parenthesis), respectively. GnT-V is highly associated with cancer metastasis, whereas GnT-III is associated with cancer suppression. Fut8 is involved in expression of cancer biomarker as well as in the treatment of cancer. In addition to these enzymes, GnT-IV and GnT-IX (GnT-Vb) will be also discussed in relation to cancer.

269 citations

Journal ArticleDOI
TL;DR: The imbalanced microenvironment of the spinal cord impairs regeneration and functional recovery and this review will aid in the understanding of the pathological processes involved in and the development of comprehensive treatments for SCI.

238 citations

Journal ArticleDOI
TL;DR: The therapeutic role of MSCs is discussed, together with their properties, application, limitations, and future perspectives.
Abstract: Spinal cord injury (SCI) constitutes an inestimable public health issue. The most crucial phase in the pathophysiological process of SCI concerns the well-known secondary injury, which is the uncontrolled and destructive cascade occurring later with aberrant molecular signaling, inflammation, vascular changes, and secondary cellular dysfunctions. The use of mesenchymal stem cells (MSCs) represents one of the most important and promising tested strategies. Their appeal, among the other sources and types of stem cells, increased because of their ease of isolation/preservation and their properties. Nevertheless, encouraging promise from preclinical studies was followed by weak and conflicting results in clinical trials. In this review, the therapeutic role of MSCs is discussed, together with their properties, application, limitations, and future perspectives.

181 citations

Journal ArticleDOI
TL;DR: Recent advances in understanding of the enzymatic functions of the like-glycosyltransferase (LARGE) and protein O-mannose kinase (POMK) are summarized and a novel polysaccharide structure matriglycan is proposed to name.
Abstract: Associations between cells and the basement membrane are critical for a variety of biological events including cell proliferation, cell migration, cell differentiation and the maintenance of tissue integrity. Dystroglycan is a highly glycosylated basement membrane receptor, and is involved in physiological processes that maintain integrity of the skeletal muscle, as well as development and function of the central nervous system. Aberrant O-glycosylation of the α subunit of this protein, and a concomitant loss of dystroglycan's ability to function as a receptor for extracellular matrix (ECM) ligands that bear laminin globular (LG) domains, occurs in several congenital/limb-girdle muscular dystrophies (also referred to as dystroglycanopathies). Recent genetic studies revealed that mutations in DAG1 (which encodes dystroglycan) and at least 17 other genes disrupt the ECM receptor function of dystroglycan and cause disease. Here, we summarize recent advances in our understanding of the enzymatic functions of two of these disease genes: the like-glycosyltransferase (LARGE) and protein O-mannose kinase (POMK, previously referred to as SGK196). In addition, we discuss the structure of the glycan that directly binds the ECM ligands and the mechanisms by which this functional motif is linked to dystroglycan. In light of the fact that dystroglycan functions as a matrix receptor and the polysaccharide synthesized by LARGE is the binding motif for matrix proteins, we propose to name this novel polysaccharide structure matriglycan.

175 citations