scispace - formally typeset
Search or ask a question
Author

Kenji Koga

Bio: Kenji Koga is an academic researcher from University of Tokyo. The author has contributed to research in topics: Enantioselective synthesis & Alkylation. The author has an hindex of 45, co-authored 302 publications receiving 6262 citations. Previous affiliations of Kenji Koga include Osaka University & National Archives and Records Administration.


Papers
More filters
Journal ArticleDOI
TL;DR: Aerobic oxidative coupling of 2-naphthol derivatives by the use of 1 mol% of CuCl-amine complex afforded binaphtholic derivatives in excellent yields as mentioned in this paper.

173 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations

Journal ArticleDOI
TL;DR: The focus of this review is on the area of enantioselective transition metal-catalyzed allylic alkylations which may involve C-C as well as C-X (X ) H or heteroatom) bond formation.
Abstract: Efficient and reliable amplification of chirality has borne its greatest fruit with transition metal-catalyzed reactions since enantiocontrol may often be imposed by replacing an achiral or chiral racemic ligand with one that is chiral and scalemic While the most thoroughly developed enantioselective transition metal-catalyzed reactions are those involving transfer of oxygen (epoxidation and dihydroxylation)1,2 and molecular hydrogen,3 the focus of this review is on the area of enantioselective transition metal-catalyzed allylic alkylations which may involve C-C as well as C-X (X ) H or heteroatom) bond formation4-9 The synthetic utility of transitionmetal-catalyzed allylic alkylations has been soundly demonstrated since its introduction nearly three decades ago10-21 In contrast to processes where the allyl moiety acts as the nucleophilic partner, we will limit our discussion to processes which result in nucleophilic displacements on allylic substrates (eq 1) Such reactions have been recorded with a broad

2,576 citations