scispace - formally typeset
Search or ask a question
Author

Kenji Omasa

Bio: Kenji Omasa is an academic researcher from University of Tokyo. The author has contributed to research in topics: Chlorophyll fluorescence & Germination. The author has an hindex of 43, co-authored 214 publications receiving 6509 citations. Previous affiliations of Kenji Omasa include Tokyo University of Agriculture and Technology & Science Council of Japan.


Papers
More filters
Journal ArticleDOI
TL;DR: A method for accurate estimation of leaf area density and the cumulative leaf area index (LAI) profiles of small trees (Camellia sasanqua and Deutzia crenata) under different conditions was demonstrated, which used precise voxel-based tree models produced by high-resolution portable scanning lidar.
Abstract: A method for accurate estimation of leaf area density (LAD) and the cumulative leaf area index (LAI) profiles of small trees (Camellia sasanqua and Deutzia crenata) under different conditions was demonstrated, which used precise voxel-based tree models produced by high-resolution portable scanning lidar. In this voxel-based canopy profiling (VCP) method, data for each horizontal layer of the canopy of each tree were collected from symmetrical azimuthal measurement points around the tree using optimally inclined laser beams. The data were then converted into a voxel-based three-dimensional model that reproduced the tree precisely, including within the canopy. This precise voxel model allowed the LAD and LAI of these trees, which have extremely dense and nonrandomly distributed foliage, to be computed by direct counting of the beam-contact frequency in each layer using a point-quadrat method. Corrections for leaf inclination and nonphotosynthetic tissues reduced the estimation error. A beam incident zenith angle near 57.5deg offered a good correction for leaf inclination without knowledge of the actual leaf inclination. Non-photosynthetic tissues were removed by image-processing techniques. The best LAD estimations showed errors of 17% at the minimum horizontal layer thickness and of 0.7% at the maximum thickness. The error of the best LAI estimations was also 0.7%

312 citations

Journal ArticleDOI
TL;DR: A simultaneous addressing of the air pollution and climate change effects on forests may result in more effective research, management and monitoring as well as better integration of local, national and global environmental policies.

306 citations

Journal ArticleDOI
TL;DR: It is concluded that sure pollination under high-temperature conditions is an important factor and that the high-Temperature tolerance of the processes following pollen germination is also required for fertility under excessively high temperature conditions.
Abstract: SummaryThe objectives of this study are to compare the floret sterility induced by a high temperature given in the daytime during the flowering period among nine japonica rice varieties, and to clarify the mechanism of the high-temperature-induced sterility. Nine japonica rice varieties were subjected to 35.0, 37.5 or 40.0°C day- temperature conditions (1000-1600) for six consecutive days using sun-lit phytotrons, and the percentage of fertility, pollination and germinated pollen grains on the stigmas were examined. The temperature that caused 50% sterility varied with the variety, and a difference of approximately 3.0°C was observed between the most tolerant and susceptible varieties. Under the 37.5°C day-temperature condition, the percentage of florets with 10 or more germinated pollen grains was roughly coincident with the percent fertility, but under the 40° C day-temperature condition, it was higher than the percent fertility. Many of the florets with less than 10 germinated pollen grains had less th...

300 citations

Journal ArticleDOI
TL;DR: The use of 3D lidar imaging to estimate plant properties such as canopy height, canopy structure, carbon stock, and species is demonstrated, and plant growth and shape responses are assessed by reviewing the development of lidar systems and their applications from the leaf level to canopy remote sensing.
Abstract: Understanding and diagnosing plant responses to stress will benefit greatly from three-dimensional (3D) measurement and analysis of plant properties because plant responses are strongly related to their 3D structures. Light detection and ranging (lidar) has recently emerged as a powerful tool for direct 3D measurement of plant structure. Here the use of 3D lidar imaging to estimate plant properties such as canopy height, canopy structure, carbon stock, and species is demonstrated, and plant growth and shape responses are assessed by reviewing the development of lidar systems and their applications from the leaf level to canopy remote sensing. In addition, the recent creation of accurate 3D lidar images combined with natural colour, chlorophyll fluorescence, photochemical reflectance index, and leaf temperature images is demonstrated, thereby providing information on responses of pigments, photosynthesis, transpiration, stomatal opening, and shape to environmental stresses; these data can be integrated with 3D images of the plants using computer graphics techniques. Future lidar applications that provide more accurate dynamic estimation of various plant properties should improve our understanding of plant responses to stress and of interactions between plants and their environment. Moreover, combining 3D lidar with other passive and active imaging techniques will potentially improve the accuracy of airborne and satellite remote sensing, and make it possible to analyse 3D information on ecophysiological responses and levels of various substances in agricultural and ecological applications and in observations of the global biosphere.

300 citations

Journal ArticleDOI
TL;DR: It is concluded that the tight closure of the locules by the cell layers delayed locule opening, and decreased fertility at high temperatures.

244 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

01 Dec 2010
TL;DR: In this article, the authors suggest a reduction in the global NPP of 0.55 petagrams of carbon, which would not only weaken the terrestrial carbon sink, but would also intensify future competition between food demand and biofuel production.
Abstract: Terrestrial net primary production (NPP) quantifies the amount of atmospheric carbon fixed by plants and accumulated as biomass. Previous studies have shown that climate constraints were relaxing with increasing temperature and solar radiation, allowing an upward trend in NPP from 1982 through 1999. The past decade (2000 to 2009) has been the warmest since instrumental measurements began, which could imply continued increases in NPP; however, our estimates suggest a reduction in the global NPP of 0.55 petagrams of carbon. Large-scale droughts have reduced regional NPP, and a drying trend in the Southern Hemisphere has decreased NPP in that area, counteracting the increased NPP over the Northern Hemisphere. A continued decline in NPP would not only weaken the terrestrial carbon sink, but it would also intensify future competition between food demand and proposed biofuel production.

1,780 citations

Journal ArticleDOI
TL;DR: In this article, an overview of the actual knowledge of the biogenic emissions of some volatile organic compounds (VOCs), i.e., isoprene, terpenes, alkanes, alkenes, carbonyls, alcohols, esters, and acids, is presented.
Abstract: This overview compiles the actual knowledge of the biogenic emissions of some volatile organic compounds (VOCs), i.e., isoprene, terpenes, alkanes, alkenes, alcohols, esters, carbonyls, and acids. We discuss VOC biosynthesis, emission inventories, relations between emission and plant physiology as well as temperature and radiation, and ecophysiological functions. For isoprene and monoterpenes, an extended summary of standard emission factors, with data related to the plant genus and species, is included. The data compilation shows that we have quite a substantial knowledge of the emission of isoprene and monoterpenes, including emission rates, emission regulation, and biosynthesis. The situation is worse in the case of numerous other compounds (other VOCs or OVOCs) being emitted by the biosphere. This is reflected in the insufficient knowledge of emission rates and biological functions. Except for the terpenoids, only a limited number of studies of OVOCs are available; data are summarized for alkanes, alkenes, carbonyls, alcohols, acids, and esters. In addition to closing these gaps of knowledge, one of the major objectives for future VOC research is improving our knowledge of the fate of organic carbon in the atmosphere, ending up in oxidation products and/or as aerosol particles.

1,687 citations

Journal ArticleDOI
TL;DR: The results achieved so far indicate that various plant organs, in a definite hierarchy and in interaction with each other, are involved in determining crop yield under stress.
Abstract: As the result of intensive research and breeding efforts over the last 20 years, the yield potential and yield quality of cereals have been greatly improved. Nowadays, yield safety has gained more importance because of the forecasted climatic changes. Drought and high temperature are especially considered as key stress factors with high potential impact on crop yield. Yield safety can only be improved if future breeding attempts will be based on the valuable new knowledge acquired on the processes determining plant development and its responses to stress. Plant stress responses are very complex. Interactions between plant structure, function and the environment need to be investigated at various phases of plant development at the organismal, cellular as well as molecular levels in order to obtain a full picture. The results achieved so far in this field indicate that various plant organs, in a definite hierarchy and in interaction with each other, are involved in determining crop yield under stress. Here we attempt to summarize the currently available information on cereal reproduction under drought and heat stress and to give an outlook towards potential strategies to improve yield safety in cereals.

1,547 citations