scispace - formally typeset
Search or ask a question
Author

Kenji Yamamoto

Bio: Kenji Yamamoto is an academic researcher from Kaneka Corporation. The author has contributed to research in topics: Layer (electronics) & Thin film. The author has an hindex of 33, co-authored 251 publications receiving 5684 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a silicon heterojunction with interdigitated back contacts was presented, achieving an efficiency of 26.3% and a detailed loss analysis to guide further developments.
Abstract: The efficiency of silicon solar cells has a large influence on the cost of most photovoltaics panels. Here, researchers from Kaneka present a silicon heterojunction with interdigitated back contacts reaching an efficiency of 26.3% and provide a detailed loss analysis to guide further developments.

2,052 citations

Journal ArticleDOI
TL;DR: In this paper, a heterojunction interdigitated back contact solar cell with conversion efficiency of 26.6% was developed, which was independently confirmed by Fraunhofer Institute for Solar Energysystem Callab.

394 citations

Journal ArticleDOI
TL;DR: In this article, the effective minority carrier lifetime (τe) of a large area (151.9 cm2) HJ c-Si solar cell with amorphous Si (a-Si) passivation layer was investigated from the point of view of effective minority lifetime and the impact of τe on fill factor.
Abstract: We have achieved a certified 25.1% conversion efficiency in a large area (151.9 cm2) heterojunction (HJ) crystalline Si (c-Si) solar cell with amorphous Si (a-Si) passivation layer. This efficiency is a world record in a both-side-contacted c-Si solar cell. Our high efficiency HJ c-Si solar cells are investigated from the standpoint of the effective minority carrier lifetime (τe), and the impact of τe on fill factor (FF) is discussed. The τe measurements of our high efficiency HJ c-Si solar cells reveal that τe at an injection level corresponding to an operation point of maximum power is dominated by the carrier recombination at the a-Si/c-Si interface. By optimization of the process conditions, the carrier recombination at the a-Si/c-Si interface is reduced, which leads to an improvement of the FF by an absolute value of 2.7%, and a conversion efficiency of 25.1% has been achieved. These results indicate that the reduction of carrier recombination centers at the a-Si/c-Si interface should be one of the m...

350 citations

Journal ArticleDOI
TL;DR: In this article, the performances of thin-film poly-Si solar cells with a thickness of less than 5μm on a glass substrate have been investigated, where the active i-type polySi layer was fabricated by plasma chemical vapor deposition (CVD) at low temperature.
Abstract: The performances of thin-film poly-Si solar cells with a thickness of less than 5 μm on a glass substrate have been investigated. The cell of glass/back reflector/n-i-p type Si/ITO is well characterized by the structure of naturally surface texture and enhanced absorption with a back reflector (STAR), where the active i-type poly-Si layer was fabricated by plasma chemical vapor deposition (CVD) at low temperature. The cell with a thickness of 2.0 μm demonstrated an intrinsic efficiency of 10.7% (aperture 10.1%), an open-circuit voltage of 0.539 V and a short-current density of 25.8 mA/cm2 as independently confirmed by Japan Quality Assurance. No light-induced degradation is observed. The optical and transport properties of poly-Si cells are summarized.

215 citations

Journal ArticleDOI
TL;DR: A photoelectric conversion efficiency of over 10% has been achieved in thin-film microcrystalline silicon solar cells which consist of a 2-μm thick layer of polycrystaline silicon.

200 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, an organic halide salt phenethylammonium iodide (PEAI) was used on HC(NH2)2-CH3NH3 mixed perovskite films for surface defect passivation.
Abstract: In recent years, the power conversion efficiency of perovskite solar cells has increased to reach over 20%. Finding an effective means of defect passivation is thought to be a promising route for bringing further increases in the power conversion efficiency and the open-circuit voltage (VOC) of perovskite solar cells. Here, we report the use of an organic halide salt phenethylammonium iodide (PEAI) on HC(NH2)2–CH3NH3 mixed perovskite films for surface defect passivation. We find that PEAI can form on the perovskite surface and results in higher-efficiency cells by reducing the defects and suppressing non-radiative recombination. As a result, planar perovskite solar cells with a certificated efficiency of 23.32% (quasi-steady state) are obtained. In addition, a VOC as high as 1.18 V is achieved at the absorption threshold of 1.53 eV, which is 94.4% of the Shockley–Queisser limit VOC (1.25 V). Planar perovskite solar cells that have been passivated using the organic halide salt phenethylammonium iodide are shown to have suppressed non-radiative recombination and operate with a certified power conversion efficiency of 23.3%.

3,064 citations

Journal ArticleDOI
14 Sep 2018-Science
TL;DR: In this article, a semi-empirical model analysis and using the tandem cell strategy to overcome the low charge mobility of organic materials, leading to a limit on the active-layer thickness and efficient light absorption was performed.
Abstract: Although organic photovoltaic (OPV) cells have many advantages, their performance still lags far behind that of other photovoltaic platforms. A fundamental reason for their low performance is the low charge mobility of organic materials, leading to a limit on the active-layer thickness and efficient light absorption. In this work, guided by a semi-empirical model analysis and using the tandem cell strategy to overcome such issues, and taking advantage of the high diversity and easily tunable band structure of organic materials, a record and certified 17.29% power conversion efficiency for a two-terminal monolithic solution-processed tandem OPV is achieved.

2,165 citations

Journal ArticleDOI
TL;DR: In this paper, a silicon heterojunction with interdigitated back contacts was presented, achieving an efficiency of 26.3% and a detailed loss analysis to guide further developments.
Abstract: The efficiency of silicon solar cells has a large influence on the cost of most photovoltaics panels. Here, researchers from Kaneka present a silicon heterojunction with interdigitated back contacts reaching an efficiency of 26.3% and provide a detailed loss analysis to guide further developments.

2,052 citations

Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations

Journal ArticleDOI
10 Nov 2017-Science
TL;DR: Because photocurrents are near the theoretical maximum, the focus is on efforts to increase open-circuit voltage by means of improving charge-selective contacts and charge carrier lifetimes in perovskites via processes such as ion tailoring.
Abstract: The efficiencies of perovskite solar cells have gone from single digits to a certified 22.1% in a few years' time. At this stage of their development, the key issues concern how to achieve further improvements in efficiency and long-term stability. We review recent developments in the quest to improve the current state of the art. Because photocurrents are near the theoretical maximum, our focus is on efforts to increase open-circuit voltage by means of improving charge-selective contacts and charge carrier lifetimes in perovskites via processes such as ion tailoring. The challenges associated with long-term perovskite solar cell device stability include the role of testing protocols, ionic movement affecting performance metrics over extended periods of time, and determination of the best ways to counteract degradation mechanisms.

1,371 citations