scispace - formally typeset
Search or ask a question
Author

Kenneth A. Stauderman

Bio: Kenneth A. Stauderman is an academic researcher from University of Cambridge. The author has contributed to research in topics: Voltage-dependent calcium channel & ORAI1. The author has an hindex of 24, co-authored 55 publications receiving 6537 citations. Previous affiliations of Kenneth A. Stauderman include Torrey Pines Institute for Molecular Studies.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that STIM1, a ubiquitously expressed protein that is conserved from Drosophila to mammalian cells, plays an essential role in SOC influx and may be a common component of SOC and CRAC channels.
Abstract: Store-operated Ca2+ (SOC) channels regulate many cellular processes, but the underlying molecular components are not well defined. Using an RNA interference (RNAi)-based screen to identify genes that alter thapsigargin (TG)-dependent Ca2+ entry, we discovered a required and conserved role of Stim in SOC influx. RNAi-mediated knockdown of Stim in Drosophila S2 cells significantly reduced TG-dependent Ca2+ entry. Patch-clamp recording revealed nearly complete suppression of the Drosophila Ca2+ release-activated Ca2+ (CRAC) current that has biophysical characteristics similar to CRAC current in human T cells. Similarly, knockdown of the human homologue STIM1 significantly reduced CRAC channel activity in Jurkat T cells. RNAi-mediated knockdown of STIM1 inhibited TG- or agonist-dependent Ca2+ entry in HEK293 or SH-SY5Y cells. Conversely, overexpression of STIM1 in HEK293 cells modestly enhanced TG-induced Ca2+ entry. We propose that STIM1, a ubiquitously expressed protein that is conserved from Drosophila to mammalian cells, plays an essential role in SOC influx and may be a common component of SOC and CRAC channels.

1,751 citations

Journal ArticleDOI
06 Oct 2005-Nature
TL;DR: It is proposed that STIM1 functions as the missing link between Ca2+ store depletion and SOC influx, serving as aCa2+ sensor that translocates upon store depletion to the plasma membrane to activate CRAC channels.
Abstract: As the sole Ca2+ entry mechanism in a variety of non-excitable cells, store-operated calcium (SOC) influx is important in Ca2+ signalling and many other cellular processes1,2,3. A calcium-release-activated calcium (CRAC) channel in T lymphocytes is the best-characterized SOC influx channel4,5,6 and is essential to the immune response, sustained activity of CRAC channels being required for gene expression and proliferation7,8,9,10. The molecular identity and the gating mechanism of SOC and CRAC channels have remained elusive. Previously we identified Stim and the mammalian homologue STIM1 as essential components of CRAC channel activation in Drosophila S2 cells and human T lymphocytes11. Here we show that the expression of EF-hand mutants of Stim or STIM1 activates CRAC channels constitutively without changing Ca2+ store content. By immunofluorescence, EM localization and surface biotinylation we show that STIM1 migrates from endoplasmic-reticulum-like sites to the plasma membrane upon depletion of the Ca2+ store. We propose that STIM1 functions as the missing link between Ca2+ store depletion and SOC influx, serving as a Ca2+ sensor that translocates upon store depletion to the plasma membrane to activate CRAC channels.

1,340 citations

Journal ArticleDOI
TL;DR: Using an unbiased genome-wide RNA interference screen in Drosophila S2 cells, 75 hits are identified that strongly inhibited Ca(2+) influx upon store emptying by thapsigargin, including Stim and olf186-F, a member of a highly conserved family of four-transmembrane spanning proteins with homologs from Caenorhabditis elegans to human.
Abstract: Recent studies by our group and others demonstrated a required and conserved role of Stim in store-operated Ca(2+) influx and Ca(2+) release-activated Ca(2+) (CRAC) channel activity. By using an unbiased genome-wide RNA interference screen in Drosophila S2 cells, we now identify 75 hits that strongly inhibited Ca(2+) influx upon store emptying by thapsigargin. Among these hits are 11 predicted transmembrane proteins, including Stim, and one, olf186-F, that upon RNA interference-mediated knockdown exhibited a profound reduction of thapsigargin-evoked Ca(2+) entry and CRAC current, and upon overexpression a 3-fold augmentation of CRAC current. CRAC currents were further increased to 8-fold higher than control and developed more rapidly when olf186-F was cotransfected with Stim. olf186-F is a member of a highly conserved family of four-transmembrane spanning proteins with homologs from Caenorhabditis elegans to human. The endoplasmic reticulum (ER) Ca(2+) pump sarco-/ER calcium ATPase (SERCA) and the single transmembrane-soluble N-ethylmaleimide-sensitive (NSF) attachment receptor (SNARE) protein Syntaxin5 also were required for CRAC channel activity, consistent with a signaling pathway in which Stim senses Ca(2+) depletion within the ER, translocates to the plasma membrane, and interacts with olf186-F to trigger CRAC channel activity.

834 citations

Journal ArticleDOI
TL;DR: Using a rat neuropathic pain model in which gabapentin-sensitive tactile allodynia develops after tight ligation of the left fifth and sixth lumbar spinal nerves, a >17-fold, time-dependent increase in α2δ subunit expression in DRGs ipsilateral to the nerve injury is found, suggesting that DRG α2 δ regulation may play an unique role in neuroplasticity after peripheral nerve injury.
Abstract: Peripheral nerve injury can lead to a persistent neuropathic pain state in which innocuous tactile stimulation elicits pain behavior (tactile allodynia). Spinal administration of the anticonvulsant gabapentin suppresses allodynia by an unknown mechanism. In vitro studies indicate that gabapentin binds to the α2δ-1 (hereafter referred to as α2δ) subunit of voltage-gated calcium channels. We hypothesized that nerve injury may result in altered α2δ subunit expression in spinal cord and dorsal root ganglia (DRGs) and that this change may play a role in neuropathic pain processing. Using a rat neuropathic pain model in which gabapentin-sensitive tactile allodynia develops after tight ligation of the left fifth and sixth lumbar spinal nerves, we found a >17-fold, time-dependent increase in α2δ subunit expression in DRGs ipsilateral to the nerve injury. Marked α2δ subunit upregulation was also evident in rats with unilateral sciatic nerve crush, but not dorsal rhizotomy, indicating a peripheral origin of the expression regulation. The increased α2δ subunit expression preceded the allodynia onset and diminished in rats recovering from tactile allodynia. RNase protection experiments indicated that the DRG α2δ regulation was at the mRNA level. In contrast, calcium channel α1B and β3 subunit expression was not co-upregulated with the α2δ subunit after nerve injury. These data suggest that DRG α2δ regulation may play an unique role in neuroplasticity after peripheral nerve injury that may contribute to allodynia development.

594 citations

Journal ArticleDOI
TL;DR: The data show that the FHM mutations can lead to both gain- and loss-of-function of human P/Q-type calcium channels.
Abstract: Mutations in α1A, the pore-forming subunit of P/Q-type calcium channels, are linked to several human diseases, including familial hemiplegic migraine (FHM). We introduced the four missense mutations linked to FHM into human α1A-2subunits and investigated their functional consequences after expression in human embryonic kidney 293 cells. By combining single-channel and whole-cell patch-clamp recordings, we show that all four mutations affect both the biophysical properties and the density of functional channels. Mutation R192Q in the S4 segment of domain I increased the density of functional P/Q-type channels and their open probability. Mutation T666M in the pore loop of domain II decreased both the density of functional channels and their unitary conductance (from 20 to 11 pS). Mutations V714A and I1815L in the S6 segments of domains II and IV shifted the voltage range of activation toward more negative voltages, increased both the open probability and the rate of recovery from inactivation, and decreased the density of functional channels. Mutation V714A decreased the single-channel conductance to 16 pS. Strikingly, the reduction in single-channel conductance induced by mutations T666M and V714A was not observed in some patches or periods of activity, suggesting that the abnormal channel may switch on and off, perhaps depending on some unknown factor. Our data show that the FHM mutations can lead to both gain- and loss-of-function of human P/Q-type calcium channels.

276 citations


Cited by
More filters
Journal ArticleDOI
16 Oct 2009-Cell
TL;DR: Genetic, electrophysiological, and pharmacological studies are elucidating the molecular mechanisms that underlie detection, coding, and modulation of noxious stimuli that generate pain.

3,394 citations

Journal ArticleDOI
TL;DR: Strategies for identification of patients at risk and for prevention and possible treatment of this important entity of chronic pain are outlined.

3,365 citations

Journal ArticleDOI
TL;DR: Current studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains, and microglial cells are considered the most susceptible sensors of brain pathology.
Abstract: Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.

2,998 citations

Journal ArticleDOI
TL;DR: The key electrophysiological features of I(CRAC) and other store-operated Ca(2+) currents and how they are regulated are described, and recent advances that have shed insight into the molecular mechanisms involved in this ubiquitous and vital Ca( 2+) entry pathway are considered.
Abstract: In electrically nonexcitable cells, Ca2+ influx is essential for regulating a host of kinetically distinct processes involving exocytosis, enzyme control, gene regulation, cell growth and prolifera...

2,248 citations

Journal ArticleDOI
TL;DR: The molecular relationships and physiological functions of these calcium channel proteins are presented and comprehensive information on their molecular, genetic, physiological, and pharmacological properties is provided.
Abstract: The family of voltage-gated sodium channels initiates action potentials in all types of excitable cells. Nine members of the voltage-gated sodium channel family have been characterized in mammals, and a 10th member has been recognized as a related protein. These distinct sodium channels have similar structural and functional properties, but they initiate action potentials in different cell types and have distinct regulatory and pharmacological properties. This article presents the molecular relationships and physiological roles of these sodium channel proteins and provides comprehensive information on their molecular, genetic, physiological, and pharmacological properties.

2,199 citations