scispace - formally typeset
Search or ask a question
Author

Kenneth C. Freeman

Other affiliations: Ghent University, University of Manitoba, Ames Research Center  ...read more
Bio: Kenneth C. Freeman is an academic researcher from Australian National University. The author has contributed to research in topics: Galaxy & Stars. The author has an hindex of 123, co-authored 879 publications receiving 54401 citations. Previous affiliations of Kenneth C. Freeman include Ghent University & University of Manitoba.
Topics: Galaxy, Stars, Milky Way, Halo, Globular cluster


Papers
More filters
Journal ArticleDOI
TL;DR: The formation and evolution of galaxies is one of the great outstanding problems of astrophysics as discussed by the authors, and a detailed physical picture where individual stellar populations can be associated with (tagged to) elements of the protocloud is far beyond our current understanding.
Abstract: ▪ Abstract The formation and evolution of galaxies is one of the great outstanding problems of astrophysics. Within the broad context of hierachical structure formation, we have only a crude picture of how galaxies like our own came into existence. A detailed physical picture where individual stellar populations can be associated with (tagged to) elements of the protocloud is far beyond our current understanding. Important clues have begun to emerge from both the Galaxy (near-field cosmology) and the high redshift universe (far-field cosmology). Here we focus on the fossil evidence provided by the Galaxy. Detailed studies of the Galaxy lie at the core of understanding the complex processes involved in baryon dissipation. This is a necessary first step toward achieving a successful theory of galaxy formation.

1,128 citations

Journal ArticleDOI
TL;DR: In this paper, an analysis of 5.7 yr of photometry on 11.9 million stars in the Large Magellanic Cloud (LMC) reveals 13-17 microlensing events, which is significantly more than the 2-4 events expected from lensing by known stellar populations.
Abstract: We report on our search for microlensing toward the Large Magellanic Cloud (LMC). Analysis of 5.7 yr of photometry on 11.9 million stars in the LMC reveals 13-17 microlensing events. A detailed treatment of our detection efficiency shows that this is significantly more than the ~2-4 events expected from lensing by known stellar populations. The timescales () of the events range from 34 to 230 days. We estimate the microlensing optical depth toward the LMC from events with 2 < < 400 days to be τ = 1.2 × 10-7, with an additional 20% to 30% of systematic error. The spatial distribution of events is mildly inconsistent with LMC/LMC disk self-lensing, but is consistent with an extended lens distribution such as a Milky Way or LMC halo. Interpreted in the context of a Galactic dark matter halo, consisting partially of compact objects, a maximum-likelihood analysis gives a MACHO halo fraction of 20% for a typical halo model with a 95% confidence interval of 8%-50%. A 100% MACHO halo is ruled out at the 95% confidence level for all except our most extreme halo model. Interpreted as a Galactic halo population, the most likely MACHO mass is between 0.15 and 0.9 M☉, depending on the halo model, and the total mass in MACHOs out to 50 kpc is found to be 9 × 1010 M☉, independent of the halo model. These results are marginally consistent with our previous results, but are lower by about a factor of 2. This is mostly due to Poisson noise, because with 3.4 times more exposure and increased sensitivity to long-timescale events, we did not find the expected factor of ~4 more events. In addition to a larger data set, this work also includes an improved efficiency determination, improved likelihood analysis, and more thorough testing of systematic errors, especially with respect to the treatment of potential backgrounds to microlensing. We note that an important source of background are supernovae (SNe) in galaxies behind the LMC.

948 citations

Journal ArticleDOI
01 Oct 2006-Scopus
TL;DR: The first data release of the Radial Velocity Experiment (RAVE) is presented and it is demonstrated that the radial velocities derived for the first data set do not show any systematic trend with color or signal-to-noise ratio.
Abstract: We present the first data release of the Radial Velocity Experiment (RAVE), an ambitious spectroscopic survey to measure radial velocities and stellar atmosphere parameters (temperature, metallicity, and surface gravity) of up to one million stars using the Six Degree Field multiobject spectrograph on the 1.2 m UK Schmidt Telescope of the Anglo-Australian Observatory. The RAVE program started in 2003, obtaining medium-resolution spectra (median R 1⁄4 7500) in the Ca-triplet region (8410–8795 8) for southern hemisphere stars drawn from the Tycho-2 and SuperCOSMOS catalogs, in the magnitude range 9 < I < 12. The first data release is described in this paper and contains radial velocities for 24,748 individual stars (25,274 measurements when including reobservations). Those data were obtained on 67 nights between 2003 April 11 and 2004 April 3. The total sky coverage within this data release is 4760 deg. The average signal-to-noise ratio of the observed spectra is 29.5, and 80% of the radial velocities have uncertainties better than 3.4 km s . Combining internal errors and zero-point errors, the mode is found to be 2 km s . Repeat observations are used to assess the stability of our radial velocity solution, resulting in a variance of 2.8 km s . We demonstrate that the radial velocities derived for the first data set do not show any systematic trend with color or signal-to-noise ratio. The RAVE radial velocities are complemented in the data release with proper motions from Starnet 2.0, Tycho-2, and SuperCOSMOS, in addition to photometric data from the major optical and infrared catalogs (Tycho-2, USNO-B, DENIS, and the TwoMicron All Sky Survey). The data release can be accessed via the RAVE Web site.

916 citations

Journal ArticleDOI
TL;DR: In this article, an analysis of 5.7 years of photometry on 11.9 million stars in the Large Magellanic Cloud (LMC) reveals 13 - 17 microlensing events.
Abstract: We report on our search for microlensing towards the Large Magellanic Cloud (LMC). Analysis of 5.7 years of photometry on 11.9 million stars in the LMC reveals 13 - 17 microlensing events. This is significantly more than the $\sim$ 2 to 4 events expected from lensing by known stellar populations. The timescales ($\that$) of the events range from 34 to 230 days. We estimate the microlensing optical depth towards the LMC from events with $2 < \that < 400$ days to be 1.2 ^{+0.4}_ {-0.3} \ten{-7}$, with an additional 20% to 30% of systematic error. The spatial distribution of events is mildly inconsistent with LMC/LMC disk self-lensing, but is consistent with an extended lens distribution such as a Milky Way or LMC halo. Interpreted in the context of a Galactic dark matter halo, consisting partially of compact objects, a maximum likelihood analysis gives a MACHO halo fraction of 20% for a typical halo model with a 95% confidence interval of 8% to 50%. A 100% MACHO halo is ruled out at the 95% C.L. for all except our most extreme halo model. Interpreted as a Galactic halo population, the most likely MACHO mass is between $ 0.15 \msun$ and $ 0.9 \msun$, depending on the halo model, and the total mass in MACHOs out to 50 kpc is found to be 9+4-3 10^{10} msun, independent of the halo model. These results are marginally consistent with our previous results, but are lower by about a factor of two. Besides a larger data set, this work also includes an improved efficiency determination, improved likelihood analysis, and more thorough testing of systematic errors, especially with respect to the treatment of potential backgrounds to microlensing, such as supernovae in galaxies behind the LMC. [Abridged]

763 citations

Journal Article
Gerry Gilmore, Sofia Randich, Martin Asplund, James Binney  +271 moreInstitutions (2)
TL;DR: The Gaia-ESO Public Spectroscopic Survey has begun and will obtain high quality spectroscopy of some 100000 Milky Way stars, in the field and in open clusters, down to magnitude 19, systematically.
Abstract: The Gaia-ESO Public Spectroscopic Survey has begun and will obtain high quality spectroscopy of some 100000 Milky Way stars, in the field and in open clusters, down to magnitude 19, systematically ...

672 citations


Cited by
More filters
Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations

Journal ArticleDOI
TL;DR: The second Gaia data release, Gaia DR2 as mentioned in this paper, is a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products.
Abstract: Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. Aims: A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods: The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Results: Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330-680 nm) and GRP (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Conclusions: Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy.

8,308 citations

Journal ArticleDOI
TL;DR: A review of the present-day mass function and initial mass function in various components of the Galaxy (disk, spheroid, young, and globular clusters) and in conditions characteristic of early star formation is presented in this paper.
Abstract: We review recent determinations of the present-day mass function (PDMF) and initial mass function (IMF) in various components of the Galaxy—disk, spheroid, young, and globular clusters—and in conditions characteristic of early star formation. As a general feature, the IMF is found to depend weakly on the environment and to be well described by a power-law form forM , and a lognormal form below, except possibly for m!1 early star formation conditions. The disk IMF for single objects has a characteristic mass around M , m!0.08 c and a variance in logarithmic mass , whereas the IMF for multiple systems hasM , and . j!0.7 m!0.2 j!0.6 c The extension of the single MF into the brown dwarf regime is in good agreement with present estimates of L- and T-dwarf densities and yields a disk brown dwarf number density comparable to the stellar one, n!n! BD " pc !3 .T he IMF of young clusters is found to be consistent with the disk fi eld IMF, providing the same correction 0.1 for unresolved binaries, confirming the fact that young star clusters and disk field stars represent the same stellar population. Dynamical effects, yielding depletion of the lowest mass objects, are found to become consequential for ages!130 Myr. The spheroid IMF relies on much less robust grounds. The large metallicity spread in the local subdwarf photometric sample, in particular, remains puzzling. Recent observations suggest that there is a continuous kinematic shear between the thick-disk population, present in local samples, and the genuine spheroid one. This enables us to derive only an upper limit for the spheroid mass density and IMF. Within all the uncertainties, the latter is found to be similar to the one derived for globular clusters and is well represented also by a lognormal form with a characteristic mass slightly larger than for the disk, M , ,e xcluding as ignif icant population of m!0.2-0.3 c brown dwarfs in globular clusters and in the spheroid. The IMF characteristic of early star formation at large redshift remains undetermined, but different observational constraints suggest that it does not extend below!1M , .T hese results suggest a characteristic mass for star formation that decreases with time, from conditions prevailing at large redshift to conditions characteristic of the spheroid (or thick disk) to present-day conditions.Theseconclusions,however, remain speculative, given the large uncertainties in the spheroid and early star IMF determinations. These IMFs allow a reasonably robust determination of the Galactic present-day and initial stellar and brown dwarf contents. They also have important galactic implications beyond the Milky Way in yielding more accurate mass-to-light ratio determinations. The mass-to-light ratios obtained with the disk and the spheroid IMF yield values 1.8-1.4 times smaller than for a Salpeter IMF, respectively, in agreement with various recent dynamical determinations. This general IMF determination is examined in the context of star formation theory. None of the theories based on a Jeans-type mechanism, where fragmentation is due only to gravity, can fulfill all the observational constraints on star formation and predict a large number of substellar objects. On the other hand, recent numerical simulations of compressible turbulence, in particular in super-Alfvenic conditions, seem to reproduce both qualitatively and quantitatively the stellar and substellar IMF and thus provide an appealing theoretical foundation. In this picture, star formation is induced by the dissipation of large-scale turbulence to smaller scales through radiative MHD shocks, producing filamentary structures. These shocks produce local nonequilibrium structures with large density contrasts, which collapse eventually in gravitationally bound objects under the combined influence of turbulence and gravity. The concept of a single Jeans mass is replaced by a distribution of local Jeans masses, representative of the lognormal probability density function of the turbulent gas. Objects below the mean thermal Jeans mass still have a possibility to collapse, although with a decreasing probability.

8,218 citations

Journal ArticleDOI
01 Dec 2010
TL;DR: The Wide-field Infrared Survey Explorer (WISE) is mapping the whole sky following its launch on 14 December 2009 and completed its first full coverage of the sky on July 17 as discussed by the authors.
Abstract: The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite and the 2 Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer is mapping the whole sky following its launch on 14 December 2009. WISE began surveying the sky on 14 Jan 2010 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in November 2010). WISE is achieving 5 sigma point source sensitivities better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12 and 22 micrometers. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6.1", 6.4", 6.5" and 12.0" at 3.4, 4.6, 12 and 22 micrometers, and the astrometric precision for high SNR sources is better than 0.15".

7,182 citations

Journal ArticleDOI
TL;DR: Gaia as discussed by the authors is a cornerstone mission in the science programme of the European Space Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach.
Abstract: Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page.

5,164 citations