scispace - formally typeset
Search or ask a question
Author

Kenneth C. Lewis

Bio: Kenneth C. Lewis is an academic researcher from University of North Carolina at Chapel Hill. The author has contributed to research in topics: Capillary electrophoresis & Globular protein. The author has an hindex of 6, co-authored 7 publications receiving 1213 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: F fused-silica capillaries with inner diameters of 30 microns are slurry packed with 1.5 microns nonporous octadecylsilane-modified silica particles to improve the efficiency and reduce analysis time for columns packed with small particles.
Abstract: The use of extremely high pressures in liquid chromatography can improve the efficiency and reduce analysis time for columns packed with small particles. In this work, fused-silica capillaries with inner diameters of 30 μm are slurry packed with 1.5 μm nonporous octadecylsilane-modified silica particles. These columns are prepared in lengths up to 66 cm with packing pressures as high as 4100 bar (60 000 psi). Near the optimum flow rate, columns generate as many as 300 000 theoretical plates for lightly retained compounds (k‘ < 0.5) and over 200 000 plates for more retained compounds (k‘ ≈ 2). These translate to plate heights (Hmin) as low as 2.1 μm. The pressures required to run at optimum flow rates are on the order of 1400 bar (20 000 psi). Analysis times at these pressures are on the order of 30 min (k‘ ≈ 2) and can be reduced to less than 10 min at higher than optimum flow rates. Capacity factors are observed to increase linearly with applied pressure.

569 citations

Journal ArticleDOI
TL;DR: This system uses cation-exchange chromatography followed by reversed-phase chromatography (RPLC) for the separation of protein mixtures and can be rapidly separated, desalted, and analyzed for molecular weight in less than 2 h.
Abstract: This is a description of a comprehensive two-dimensional liquid chromatography (LC) system for the separation of protein mixtures. This system uses cation-exchange chromatography followed by reversed-phase chromatography (RPLC). The two LC systems are coupled by an eight-port valve equipped with two storage loops and under computer control. The RPLC effluent is sampled by both a UV detector and an electrospray mass spectrometer. In this way, complex mixtures of large biomolecules can be rapidly separated, desalted, and analyzed for molecular weight in less than 2 h. The system's utility is demonstrated with a mixture of standards and an Escherichia coli cell lysate.

301 citations

Journal ArticleDOI
TL;DR: Globular proteins ranging in molecular mass from 5.7 to 669 kDa were separated and analyzed using an aerosol technique based on the electrophoretic mobility of singly-charged molecular ions in air using ionized air to remove the droplet charge due to the spray process.
Abstract: Globular proteins ranging in molecular mass from 5.7 to 669 kDa were separated and analyzed using an aerosol technique based on the electrophoretic mobility of singly-charged molecular ions in air. The ions were produced by electrospraying and drying 100-nm-diameter droplets of a liquid suspension of the proteins, using ionized air to remove the droplet charge due to the spray process. The electrophoretic mobility was measured using a modified commercial continuous-flow differential mobility analyzer operated near atmospheric pressure. An unmodified commercial condensation particle counter was used for detection. The concentrations analyzed ranged from 0.02 to 200 μg of protein/mL of buffer, with a liquid sample flow rate of approximately 50 nL/min. Sampling time of 3 min was used for each complete distribution measured. The electrophoretic mobilities measured were determined entirely from air flow rates, apparatus geometry, and applied potentials. Results were expressed as electrophoretic mobility equiva...

216 citations

Journal ArticleDOI
TL;DR: In this article, a two-dimensional reversed phase liquid chromatography (RPLC) and capillary zone electrophoresis (CZE) was used to separate ribonuclease B peptide standards and tryptic digests.

89 citations

Journal ArticleDOI
TL;DR: The detector is a condensation particle counter that detects individual particles by light scattering from droplets condensed on the particles and a Monte Carlo model based on size measurements of the electrosprayed droplets correctly predicts the observed detector behavior.
Abstract: A new detector for macromolecular separations is described. The detector counts individual macromolecules (molecular weights greater than about 10,000) and reports counts per second. The chromatographic effluent is electrosprayed, neutralized, and swept to the detector by a stream of air. The detector is a condensation particle counter that detects individual particles by light scattering from droplets condensed on the particles. When used as the detector for a size exclusion separation of proteins, the detector has a linear range of 4 orders of magnitude with detection limits as low as 0.1 microgram/mL. The detector can be directly interfaced (no makeup flow) with effluent flows as low as 10 nL/min. A Monte Carlo model based on size measurements of the electrosprayed droplets correctly predicts the observed detector behavior.

59 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An approach for the accurate quantification and concurrent sequence identification of the individual proteins within complex mixtures based on isotope-coded affinity tags and tandem mass spectrometry is described.
Abstract: We describe an approach for the accurate quantification and concurrent sequence identification of the individual proteins within complex mixtures. The method is based on a class of new chemical reagents termed isotope-coded affinity tags (ICATs) and tandem mass spectrometry. Using this strategy, we com- pared protein expression in the yeast Saccharomyces cerevisiae, using either ethanol or galactose as a carbon source. The measured differences in protein expression correlated with known yeast metabolic function under glucose-repressed conditions. The method is redundant if multiple cysteinyl residues are present, and the relative quantification is highly accurate because it is based on stable isotope dilution techniques. The ICAT approach should provide a widely applicable means to compare quantitatively glob- al protein expression in cells and tissues.

4,893 citations

Journal ArticleDOI
TL;DR: A rapid, sensitive process for comprehensively identifying proteins in macromolecular complexes that uses multidimensional liquid chromatography and tandem mass spectrometry to separate and fragment peptides is described.
Abstract: We describe a rapid, sensitive process for comprehensively identifying proteins in macromolecular complexes that uses multidimensional liquid chromatography (LC) and tandem mass spectrometry (MS/MS) to separate and fragment peptides. The SEQUEST algorithm, relying upon translated genomic sequences, infers amino acid sequences from the fragment ions. The method was applied to the Saccharomyces cerevisiae ribosome leading to the identification of a novel protein component of the yeast and human 40S subunit. By offering the ability to identify >100 proteins in a single run, this process enables components in even the largest macromolecular complexes to be analyzed comprehensively.

2,236 citations

Journal ArticleDOI
TL;DR: 4. Automated Interpretation of CID Spectra 282 5. Accurate Mass Tags 282 C. Protein Identification in Complex Mixtures 282 D. Analysis of Protein Expression 284 III.
Abstract: 4. Automated Interpretation of CID Spectra 282 5. Accurate Mass Tags 282 C. Protein Identification in Complex Mixtures 282 D. Analysis of Protein Expression 284 III. Proteomes and Post-Translational Modifications 285 A. Proteomes 285 1. The Analytical Challenge 285 2. Analysis of Protein−Protein Complexes 286 B. Post-Translational Modifications 286 1. Background 286 2. Detection and Purification of Phosphoproteins 288

1,416 citations

Journal ArticleDOI
TL;DR: The progress of proteomics has been driven by the development of new technologies for peptide/protein separation, mass spectrometry analysis, isotope labeling for quantification, and bioinformatics data analysis.
Abstract: According to Genome Sequencing Project statistics (http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html), as of Feb 16, 2012, complete gene sequences have become available for 2816 viruses, 1117 prokaryotes, and 36 eukaryotes.1–2 The availability of full genome sequences has greatly facilitated biological research in many fields, and has greatly contributed to the growth of proteomics. Proteins are important because they are the direct bio-functional molecules in the living organisms. The term “proteomics” was coined from merging “protein” and “genomics” in the 1990s.3–4 As a post-genomic discipline, proteomics encompasses efforts to identify and quantify all the proteins of a proteome, including expression, cellular localization, interactions, post-translational modifications (PTMs), and turnover as a function of time, space and cell type, thus making the full investigation of a proteome more challenging than sequencing a genome. There are possibly 100,000 protein forms encoded by the approximate 20,235 genes of the human genome,5 and determining the explicit function of each form will be a challenge. The progress of proteomics has been driven by the development of new technologies for peptide/protein separation, mass spectrometry analysis, isotope labeling for quantification, and bioinformatics data analysis. Mass spectrometry has emerged as a core tool for large-scale protein analysis. In the past decade, there has been a rapid advance in the resolution, mass accuracy, sensitivity and scan rate of mass spectrometers used to analyze proteins. In addition, hybrid mass analyzers have been introduced recently (e.g. Linear Ion Trap-Orbitrap series6–7) which have significantly improved proteomic analysis. “Bottom-up” protein analysis refers to the characterization of proteins by analysis of peptides released from the protein through proteolysis. When bottom-up is performed on a mixture of proteins it is called shotgun proteomics,8–10 a name coined by the Yates lab because of its analogy to shotgun genomic sequencing.11 Shotgun proteomics provides an indirect measurement of proteins through peptides derived from proteolytic digestion of intact proteins. In a typical shotgun proteomics experiment, the peptide mixture is fractionated and subjected to LC-MS/MS analysis. Peptide identification is achieved by comparing the tandem mass spectra derived from peptide fragmentation with theoretical tandem mass spectra generated from in silico digestion of a protein database. Protein inference is accomplished by assigning peptide sequences to proteins. Because peptides can be either uniquely assigned to a single protein or shared by more than one protein, the identified proteins may be further scored and grouped based on their peptides. In contrast, another strategy, termed ‘top-down’ proteomics, is used to characterize intact proteins (Figure 1). The top-down approach has some potential advantages for PTM and protein isoform determination and has achieved notable success. Intact proteins have been measured up to 200 kDa,12 and a large scale study has identified more than 1,000 proteins by multi-dimensional separations from complex samples.13 However, the top-down method has significant limitations compared with shotgun proteomics due to difficulties with protein fractionation, protein ionization and fragmentation in the gas phase. By relying on the analysis of peptides, which are more easily fractionated, ionized and fragmented, shotgun proteomics can be more universally adopted for protein analysis. In fact, a hybrid of bottom-up and top-down methodologies and instrumentation has been introduced as middle-down proteomics.14 Essentially, middle-down proteomics analyzes larger peptide fragments than bottom-up proteomics, minimizing peptide redundancy between proteins. Additionally the large peptide fragments yield similar advantages as top-down proteomics, such as gaining further insight into post-translational modifications, without the analytical challenges of analyzing intact proteins. Shotgun proteomics has become a workhorse for the analysis of proteins and their modifications and will be increasingly combined with top-down methods in the future. Figure 1 Proteomic strategies: bottom-up vs. top-down vs. middle-down. The bottom-up approach analyzes proteolytic peptides. The top-down method measures the intact proteins. The middle-down strategy analyzes larger peptides resulted from limited digestion or ... In the past decade shotgun proteomics has been widely used by biologists for many different research experiments, advancing biological discoveries. Some applications include, but are not limited to, proteome profiling, protein quantification, protein modification, and protein-protein interaction. There have been several reviews nicely summarizing mass spectrometry history,15 protein quantification with mass spectrometry,16 its biological applications,5,17–26 and many recent advances in methodology.27–32 In this review, we try to provide a full and updated survey of shotgun proteomics, including the fundamental techniques and applications that laid the foundation along with those developed and greatly improved in the past several years.

1,184 citations

Journal ArticleDOI
TL;DR: This review article compares and contrasts various types of ion mobility-mass spectrometers available today and describes their advantages for application to a wide range of analytes.
Abstract: This review article compares and contrasts various types of ion mobility-mass spectrometers available today and describes their advantages for application to a wide range of analytes. Ion mobility spectrometry (IMS), when coupled with mass spectrometry, offers value-added data not possible from mass spectra alone. Separation of isomers, isobars, and conformers; reduction of chemical noise; and measurement of ion size are possible with the addition of ion mobility cells to mass spectrometers. In addition, structurally similar ions and ions of the same charge state can be separated into families of ions which appear along a unique mass-mobility correlation line. This review describes the four methods of ion mobility separation currently used with mass spectrometry. They are (1) drift-time ion mobility spectrometry (DTIMS), (2) aspiration ion mobility spectrometry (AIMS), (3) differential-mobility spectrometry (DMS) which is also called field-asymmetric waveform ion mobility spectrometry (FAIMS) and (4) traveling-wave ion mobility spectrometry (TWIMS). DTIMS provides the highest IMS resolving power and is the only IMS method which can directly measure collision cross-sections. AIMS is a low resolution mobility separation method but can monitor ions in a continuous manner. DMS and FAIMS offer continuous-ion monitoring capability as well as orthogonal ion mobility separation in which high-separation selectivity can be achieved. TWIMS is a novel method of IMS with a low resolving power but has good sensitivity and is well intergrated into a commercial mass spectrometer. One hundred and sixty references on ion mobility-mass spectrometry (IMMS) are provided.

1,034 citations