scispace - formally typeset
Search or ask a question
Author

Kenneth G. Paterson

Bio: Kenneth G. Paterson is an academic researcher. The author has contributed to research in topics: Cryptography & Key (cryptography). The author has an hindex of 1, co-authored 1 publications receiving 234 citations.

Papers
More filters
Book
01 Jan 2011
TL;DR: This book constitutes the refereed proceedings of the 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT 2011, held in Tallinn, Estonia, in May 2011, and contains 31 papers, presented together with 2 invited talks.
Abstract: This book constitutes the refereed proceedings of the 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT 2011, held in Tallinn, Estonia, in May 2011. The 31 papers, presented together with 2 invited talks, were carefully reviewed and selected from 167 submissions. The papers are organized in topical sections on lattice-base cryptography, implementation and side channels, homomorphic cryptography, signature schemes, information-theoretic cryptography, symmetric key cryptography, attacks and algorithms, secure computation, composability, key dependent message security, and public key encryption.

238 citations


Cited by
More filters
Book ChapterDOI
14 Aug 2011
TL;DR: A somewhat homomorphic encryption scheme that is both very simple to describe and analyze, and whose security reduces to the worst-case hardness of problems on ideal lattices using the RLWE assumption, which allows us to completely abstract out the lattice interpretation.
Abstract: We present a somewhat homomorphic encryption scheme that is both very simple to describe and analyze, and whose security (quantumly) reduces to the worst-case hardness of problems on ideal lattices. We then transform it into a fully homomorphic encryption scheme using standard "squashing" and "bootstrapping" techniques introduced by Gentry (STOC 2009). One of the obstacles in going from "somewhat" to full homomorphism is the requirement that the somewhat homomorphic scheme be circular secure, namely, the scheme can be used to securely encrypt its own secret key. For all known somewhat homomorphic encryption schemes, this requirement was not known to be achievable under any cryptographic assumption, and had to be explicitly assumed. We take a step forward towards removing this additional assumption by proving that our scheme is in fact secure when encrypting polynomial functions of the secret key. Our scheme is based on the ring learning with errors (RLWE) assumption that was recently introduced by Lyubashevsky, Peikert and Regev (Eurocrypt 2010). The RLWE assumption is reducible to worstcase problems on ideal lattices, and allows us to completely abstract out the lattice interpretation, resulting in an extremely simple scheme. For example, our secret key is s, and our public key is (a, b = as+2e), where s, a, e are all degree (n - 1) integer polynomials whose coefficients are independently drawn from easy to sample distributions.

1,127 citations

Book ChapterDOI
26 May 2013
TL;DR: This work describes plausible lattice-based constructions with properties that approximate the sought-after multilinear maps in hard-discrete-logarithm groups, and shows an example application of such multi-linear maps that can be realized using the approximation.
Abstract: We describe plausible lattice-based constructions with properties that approximate the sought-after multilinear maps in hard-discrete-logarithm groups, and show an example application of such multi-linear maps that can be realized using our approximation. The security of our constructions relies on seemingly hard problems in ideal lattices, which can be viewed as extensions of the assumed hardness of the NTRU function.

817 citations

Proceedings ArticleDOI
19 May 2012
TL;DR: In this article, the authors proposed a new notion of secure multiparty computation aided by a computationally-powerful but untrusted "cloud" server, where each user is involved only when initially uploading his (encrypted) data to the cloud, and in a final output decryption phase when outputs are revealed.
Abstract: We propose a new notion of secure multiparty computation aided by a computationally-powerful but untrusted "cloud" server. In this notion that we call on-the-fly multiparty computation (MPC), the cloud can non-interactively perform arbitrary, dynamically chosen computations on data belonging to arbitrary sets of users chosen on-the-fly. All user's input data and intermediate results are protected from snooping by the cloud as well as other users. This extends the standard notion of fully homomorphic encryption (FHE), where users can only enlist the cloud's help in evaluating functions on their own encrypted data. In on-the-fly MPC, each user is involved only when initially uploading his (encrypted) data to the cloud, and in a final output decryption phase when outputs are revealed; the complexity of both is independent of the function being computed and the total number of users in the system. When users upload their data, they need not decide in advance which function will be computed, nor who they will compute with; they need only retroactively approve the eventually-chosen functions and on whose data the functions were evaluated. This notion is qualitatively the best possible in minimizing interaction, since the users' interaction in the decryption stage is inevitable: we show that removing it would imply generic program obfuscation and is thus impossible. Our contributions are two-fold:- We show how on-the-fly MPC can be achieved using a new type of encryption scheme that we call multikey FHE, which is capable of operating on inputs encrypted under multiple, unrelated keys. A ciphertext resulting from a multikey evaluation can be jointly decrypted using the secret keys of all the users involved in the computation. - We construct a multikey FHE scheme based on NTRU, a very efficient public-key encryption scheme proposed in the 1990s. It was previously not known how to make NTRU fully homomorphic even for a single party. We view the construction of (multikey) FHE from NTRU encryption as a main contribution of independent interest. Although the transformation to a fully homomorphic system deteriorates the efficiency of NTRU somewhat, we believe that this system is a leading candidate for a practical FHE scheme.

804 citations

01 Jan 2012
TL;DR: Wang et al. as mentioned in this paper presented a 64-bit lightweight block cipher TWINE supporting 80 and 128-bit keys, which is obtained by the use of generalized Feistel structure combined with an improved block shuffle.
Abstract: This paper presents a 64-bit lightweight block cipher TWINE supporting 80 and 128- bit keys. TWINE realizes quite small hardware implementation similar to the previous lightweight block cipher proposals, yet enables efficient software implementations on various platforms, from micro-controller to high-end CPU. This characteristic is obtained by the use of generalized Feistel structure combined with an improved block shuffle, introduced at FSE 2010. Keywords: lightweight block cipher, generalized Feistel structure, block shuffle

283 citations

Book ChapterDOI
02 Dec 2012
TL;DR: In this paper, the authors proposed unbounded inner-product encryption (IPE) schemes, where the public parameters do not impose additional limitations on the predicates and attributes used for encryption and decryption keys.
Abstract: In this paper, we present the first inner-product encryption (IPE) schemes that are unbounded in the sense that the public parameters do not impose additional limitations on the predicates and attributes used for encryption and decryption keys. All previous IPE schemes were bounded, or have a bound on the size of predicates and attributes given public parameters fixed at setup. The proposed unbounded IPE schemes are fully (adaptively) secure and fully attribute-hiding in the standard model under a standard assumption, the decisional linear (DLIN) assumption. In our unbounded IPE schemes, the inner-product relation is generalized, where the two vectors of inner-product can be different sizes and it provides a great improvement of efficiency in many applications. We also present the first fully secure unbounded attribute-based encryption (ABE) schemes, and the security is proven under the DLIN assumption in the standard model. To achieve these results, we develop novel techniques, indexing and consistent randomness amplification, on the (extended) dual system encryption technique and the dual pairing vector spaces (DPVS).

208 citations