scispace - formally typeset
Search or ask a question
Author

Kenneth H. Schatten

Bio: Kenneth H. Schatten is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Sunspot & Interplanetary magnetic field. The author has an hindex of 20, co-authored 42 publications receiving 3453 citations. Previous affiliations of Kenneth H. Schatten include Goddard Space Flight Center & Stanford University.

Papers
More filters
Journal ArticleDOI
TL;DR: Green function solution to the Maxwell equations for interplanetary and coronal magnetic fields above photosphere, considering field at source surface as discussed by the authors, considering magnetic field at the source surface.
Abstract: Green function solution to Maxwell equations for interplanetary and coronal magnetic fields above photosphere, considering field at source surface

1,135 citations

Journal ArticleDOI
TL;DR: The Group Sunspot Number (GSN) as discussed by the authors is a time series that uses the number of sunspot groups observed, rather than groups and individual sunspots, to construct the time series.
Abstract: In this paper, we construct a time series known as the Group Sunspot Number. The Group Sunspot Number is designed to be more internally self-consistent (i.e., less dependent upon seeing the tiniest spots) and less noisy than the Wolf Sunspot Number. It uses the number of sunspot groups observed, rather than groups and individual sunspots. Daily, monthly, and yearly means are derived from 1610 to the present. The Group Sunspot Numbers use 65941 observations from 117 observers active before 1874 that were not used by Wolf in constructing his time series. Hence, we have calculated daily values of solar activity on 111358 days for 1610–1995, compared to 66168 days for the Wolf Sunspot Numbers. The Group Sunspot Numbers also have estimates of their random and systematic errors tabulated. The generation and preliminary analysis of the Group Sunspot Numbers allow us to make several conclusions: (1) Solar activity before 1882 is lower than generally assumed and consequently solar activity in the last few decades is higher than it has been for several centuries. (2) There was a solar activity peak in 1801 and not 1805 so there is no long anomalous cycle of 17 years as reported in the Wolf Sunspot Numbers. The longest cycle now lasts no more than 15 years. (3) The Wolf Sunspot Numbers have many inhomogeneities in them arising from observer noise and this noise affects the daily, monthly, and yearly means. The Group Sunspot Numbers also have observer noise, but it is considerably less than the noise in the Wolf Sunspot Numbers. The Group Sunspot Number is designed to be similar to the Wolf Sunspot Number, but, even if both indices had perfect inputs, some differences are expected, primarily in the daily values.

681 citations

Book
03 Apr 1997
TL;DR: This article reviewed the physics of the concept of solar forcing, from its beginnings in the early 1800's and apparent success in the 1870's, to its near demise in the 1950's and recent resurgence.
Abstract: The luminosity of the sun governs the temperatures of the planets. Yet the solar forcing, or driving, of climate, primarily due to changes in solar radiation, has never been well documented. Recent satellite measurements have shown that solar radiation varies as a function of time and wavelength, a concept that has been hypothesized for the past two centuries and has recently become a major topic with all the attention paid to global warming. This book reviews the physics of the concept of solar forcing, from its beginnings in the early 1800's and apparent success in the 1870's, to its near demise in the 1950's and recent resurgence. Since its emphasis is on solar variations as a driver for climate change, with only a brief discussion of other mechanisms, the book will be of most interest to students in climate studies.

394 citations

Journal ArticleDOI
TL;DR: In this article, four methods of estimating the sun's polar magnetic field strength near solar minimum are employed to provide an estimate of cycle 21's yearly mean sunspot number at solar maximum of 140 ± 20.
Abstract: On physical grounds it is suggested that the sun's polar field strength near a solar minimum is closely related to the following cycle's solar activity. Four methods of estimating the sun's polar magnetic field strength near solar minimum are employed to provide an estimate of cycle 21's yearly mean sunspot number at solar maximum of 140 ± 20. We think of this estimate as a first order attempt to predict the cycle's activity using one parameter of physical importance based upon dynamo theory.

298 citations

Journal ArticleDOI
TL;DR: In this article, the authors reconstructed the sunspot-group count by re-assessment of original sources, and the resulting series is a pure solar index and does not rely on input from other proxies, e.g. radionuclides, auroral sightings, or geomagnetic records.
Abstract: We have reconstructed the sunspot-group count, not by comparisons with other reconstructions and correcting those where they were deemed to be deficient, but by a re-assessment of original sources. The resulting series is a pure solar index and does not rely on input from other proxies, e.g. radionuclides, auroral sightings, or geomagnetic records. “Backboning” the data sets, our chosen method, provides substance and rigidity by using long-time observers as a stiffness character. Solar activity, as defined by the Group Number, appears to reach and sustain for extended intervals of time the same level in each of the last three centuries since 1700 and the past several decades do not seem to have been exceptionally active, contrary to what is often claimed.

195 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The flow behind an interplanetary shock was analyzed through the use of magnetic field and plasma data from five spacecraft, with emphasis on the magnetic cloud identified by a characteristic variation of the latitude angle of the magnetic field.
Abstract: The flow behind an interplanetary shock was analyzed through the use of magnetic field and plasma data from five spacecraft, with emphasis on the magnetic cloud identified by a characteristic variation of the latitude angle of the magnetic field. The size of the cloud was found to be about 0.5 AU in radial extent and greater than 30 deg in azimuthal extent, with its front boundary almost normal to the radial direction. Because the field direction of the magnetic cloud as it moved past the spacecraft was observed to rotate nearly parallel to a plane, it is thought that the field configuration of the cloud was essentially two-dimensional. These results further suggest that the lines of force in the magnetic cloud formed loops, but it could not be determined whether these loops were open or closed.

1,575 citations

Journal ArticleDOI
01 Aug 2002-Weather
TL;DR: The authors reviewed the current understanding of mechanisms that are, or may be, acting to cause climate change over the past century, with an emphasis on those due to human activity, and discussed the general level of confidence in these estimates and areas of remaining uncertainty.
Abstract: Our current understanding of mechanisms that are, or may be, acting to cause climate change over the past century is briefly reviewed, with an emphasis on those due to human activity. The paper discusses the general level of confidence in these estimates and areas of remaining uncertainty. The effects of increases in the so-called well-mixed greenhouse gases, and in particular carbon dioxide, appear to be the dominant mechanism. However, there are considerable uncertainties in our estimates of many other forcing mechanisms; those associated with the so-called indirect aerosol forcing (whereby changes in aerosols can impact on cloud properties) may be the most serious, as its climatic effect may be of a similar size as, but opposite sign to, that due to carbon dioxide. The possible role of volcanic eruptions as a natural climate change mechanism is also highlighted.

1,403 citations

Journal ArticleDOI
TL;DR: The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere.
Abstract: The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere. The basic instrument of the Magnetic Field Investigation (MFI) is a boom-mounted dual triaxial fluxgate magnetometer and associated electronics. The dual configuration provides redundancy and also permits accurate removal of the dipolar portion of the spacecraft magnetic field. The instrument provides (1) near real-time data at nominally one vector per 92 s as key parameter data for broad dissemination, (2) rapid data at 10.9 vectors s−1 for standard analysis, and (3) occasionally, snapshot (SS) memory data and Fast Fourier Transform data (FFT), both based on 44 vectors s−1. These measurements will be precise (0.025%), accurate, ultra-sensitive (0.008 nT/step quantization), and where the sensor noise level is <0.006 nT r.m.s. for 0–10 Hz. The digital processing unit utilizes a 12-bit microprocessor controlled analogue-to-digital converter. The instrument features a very wide dynamic range of measurement capability, from ±4 nT up to ±65 536 nT per axis in eight discrete ranges. (The upper range permits complete testing in the Earth's field.) In the FTT mode power spectral density elements are transmitted to the ground as fast as once every 23 s (high rate), and 2.7 min of SS memory time series data, triggered automatically by pre-set command, requires typically about 5.1 hours for transmission. Standard data products are expected to be the following vector field averages: 0.0227-s (detail data from SS), 0.092 s (‘detail’ in standard mode), 3 s, 1 min, and 1 hour, in both GSE and GSM coordinates, as well as the FFT spectral elements. As has been our team's tradition, high instrument reliability is obtained by the use of fully redundant systems and extremely conservative designs. We plan studies of the solar wind: (1) as a collisionless plasma laboratory, at all time scales, macro, meso and micro, but concentrating on the kinetic scale, the highest time resolution of the instrument (=0.022 s), (2) as a consequence of solar energy and mass output, (3) as an external source of plasma that can couple mass, momentum, and energy to the Earth's magnetosphere, and (4) as it is modified as a consequence of its imbedded field interacting with the moon. Since the GEOTAIL Inboard Magnetometer (GIM), which is similar to the MFI instrument, was developed by members of our team, we provide a brief discussion of GIM related science objectives, along with MFI related science goals.

1,368 citations

Journal ArticleDOI
TL;DR: Green function solution to the Maxwell equations for interplanetary and coronal magnetic fields above photosphere, considering field at source surface as discussed by the authors, considering magnetic field at the source surface.
Abstract: Green function solution to Maxwell equations for interplanetary and coronal magnetic fields above photosphere, considering field at source surface

1,135 citations

Journal ArticleDOI
TL;DR: In this paper, several different mathematical methods are described which use the observed line-of-sight component of the photospheric magnetic field to determine the magnetic field of the solar corona in the current-free approximation.
Abstract: Several different mathematical methods are described which use the observed line-of-sight component of the photospheric magnetic field to determine the magnetic field of the solar corona in the current-free (or potential-field) approximation. Discussed are (1) a monopole method, (2) a Legendre polynomial expansion assuming knowledge of the radial photospheric magnetic field, (3) a Legendre polynomial expansion obtained from the line-of-sight photospheric field by a least-meansquare technique, (4) solar wind simulation by zero-potential surfaces in the corona, (5) corrections for the missing flux due to magnetograph saturation. We conclude (1) that the field obtained from the monopole method is not consistent with the given magnetic data because of non-local effects produced by monopoles on a curved surface, (2) that the field given by a Legendre polynomial (which is fitted to the measured line-of-sight magnetic field) is a rigorous and self-consistent solution with respect to the available data, (3) that it is necessary to correct for the saturation of the magnetograph (at about 80 G) because fields exceeding 80 G provide significant flux to the coronal field, and (4) that a zero-potential surface at 2.5 solar radii can simulate the effect of the solar wind on the coronal magnetic field.

1,018 citations