scispace - formally typeset
Search or ask a question
Author

Kenneth I. Aycock

Bio: Kenneth I. Aycock is an academic researcher from Center for Devices and Radiological Health. The author has contributed to research in topics: Inferior vena cava & Particle image velocimetry. The author has an hindex of 10, co-authored 17 publications receiving 228 citations. Previous affiliations of Kenneth I. Aycock include Pennsylvania State University & Food and Drug Administration.

Papers
More filters
Journal ArticleDOI
TL;DR: The primary goal of this article is to summarize the FDA initiative and to report recent findings from the benchmark blood pump model study, which aided the development of an FDA Guidance Document on factors to consider when reporting computational studies in medical device regulatory submissions.
Abstract: Computational fluid dynamics (CFD) is increasingly being used to develop blood-contacting medical devices. However, the lack of standardized methods for validating CFD simulations and blood damage predictions limits its use in the safety evaluation of devices. Through a U.S. Food and Drug Administration (FDA) initiative, two benchmark models of typical device flow geometries (nozzle and centrifugal blood pump) were tested in multiple laboratories to provide experimental velocities, pressures, and hemolysis data to support CFD validation. In addition, computational simulations were performed by more than 20 independent groups to assess current CFD techniques. The primary goal of this article is to summarize the FDA initiative and to report recent findings from the benchmark blood pump model study. Discrepancies between CFD predicted velocities and those measured using particle image velocimetry most often occurred in regions of flow separation (e.g., downstream of the nozzle throat, and in the pump exit diffuser). For the six pump test conditions, 57% of the CFD predictions of pressure head were within one standard deviation of the mean measured values. Notably, only 37% of all CFD submissions contained hemolysis predictions. This project aided in the development of an FDA Guidance Document on factors to consider when reporting computational studies in medical device regulatory submissions. There is an accompanying podcast available for this article. Please visit the journal's Web site (www.asaiojournal.com) to listen.

96 citations

Journal ArticleDOI
TL;DR: Significant hemodynamic differences were observed between the two patient IVCs, with the development of a right-sided jet, larger flow recirculation regions, and lower maximum flow velocities in the left-sided IVC.
Abstract: A computational methodology for simulating virtual inferior vena cava (IVC) filter placement and IVC hemodynamics was developed and demonstrated in two patient-specific IVC geometries: a left-sided IVC and an IVC with a retroaortic left renal vein. An inverse analysis was performed to obtain the approximate in vivo stress state for each patient vein using nonlinear finite element analysis (FEA). Contact modeling was then used to simulate IVC filter placement. Contact area, contact normal force, and maximum vein displacements were higher in the retroaortic IVC than in the left-sided IVC (144 mm(2), 0.47 N, and 1.49 mm versus 68 mm(2), 0.22 N, and 1.01 mm, respectively). Hemodynamics were simulated using computational fluid dynamics (CFD), with four cases for each patient-specific vein: (1) IVC only, (2) IVC with a placed filter, (3) IVC with a placed filter and model embolus, all at resting flow conditions, and (4) IVC with a placed filter and model embolus at exercise flow conditions. Significant hemodynamic differences were observed between the two patient IVCs, with the development of a right-sided jet, larger flow recirculation regions, and lower maximum flow velocities in the left-sided IVC. These results support further investigation of IVC filter placement and hemodynamics on a patient-specific basis.

36 citations

Journal ArticleDOI
TL;DR: Experimental datasets from the inter-laboratory characterization of benchmark flow models, including the blood pump model presented herein and the previous nozzle model, can be used for validating future CFD studies and to collaboratively develop guidelines on best practices for verification, validation, uncertainty quantification, and credibility assessment of CFD simulations in the evaluation of medical devices.
Abstract: A credible computational fluid dynamics (CFD) model can play a meaningful role in evaluating the safety and performance of medical devices. A key step towards establishing model credibility is to first validate CFD models with benchmark experimental datasets to minimize model-form errors before applying the credibility assessment process to more complex medical devices. However, validation studies to establish benchmark datasets can be cost prohibitive and difficult to perform. The goal of this initiative sponsored by the U.S. Food and Drug Administration is to generate validation data for a simplified centrifugal pump that mimics blood flow characteristics commonly observed in ventricular assist devices. The centrifugal blood pump model was made from clear acrylic and included an impeller, with four equally spaced, straight blades, supported by mechanical bearings. Particle Image Velocimetry (PIV) measurements were performed at several locations throughout the pump by three independent laboratories. A standard protocol was developed for the experiments to ensure that the flow conditions were comparable and to minimize systematic errors during PIV image acquisition and processing. Velocity fields were extracted at the pump entrance, blade passage area, back gap region, and at the outlet diffuser regions. A Newtonian blood analog fluid composed of sodium iodide, glycerin, and water was used as the working fluid. Velocity measurements were made for six different pump flow conditions, with the blood-equivalent flow rate ranging between 2.5 and 7 L/min for pump speeds of 2500 and 3500 rpm. Mean intra- and inter-laboratory variabilities in velocity were ~ 10% at the majority of the measurement locations inside the pump. However, the inter-laboratory variability increased to more than ~ 30% in the exit diffuser region. The variability between the three laboratories for the peak velocity magnitude in the diffuser region ranged from 5 to 25%. The bulk velocity field near the impeller changed proportionally with the rotational speed but was relatively unaffected by the pump flow rate. In contrast, flow in the exit diffuser region was sensitive to both the flow rate and the rotational speed. Specifically, at 3500 rpm, the exit jet tilted toward the inner wall of the diffuser at a flow rate of 2.5 L/min, but the jet tilted towards the outer wall when the flow rate was 7 L/min. Inter-laboratory experimental mean velocity data (and the corresponding variance) were obtained for the FDA pump model and are available for download at https://nciphub.org/wiki/FDA_CFD . Experimental datasets from the inter-laboratory characterization of benchmark flow models, including the blood pump model presented herein and our previous nozzle model, can be used for validating future CFD studies and to collaboratively develop guidelines on best practices for verification, validation, uncertainty quantification, and credibility assessment of CFD simulations in the evaluation of medical devices (e.g. ASME V&V 40 standards working group).

33 citations

Journal ArticleDOI
TL;DR: Investigation of the importance of considering the hemorheological and morphological effects on IVC hemodynamics by simulating Newtonian and non-Newtonian blood flow in three IVC models with varying levels of geometric idealization finds that agreement with the non- newtonian simulations is better using a characteristic viscosity.
Abstract: Inferior vena cava (IVC) filters have been used for nearly half a century to prevent pulmonary embolism in at-risk patients. However, complications with IVC filters remain common. In this study, we investigate the importance of considering the hemorheological and morphological effects on IVC hemodynamics by simulating Newtonian and non-Newtonian blood flow in three IVC models with varying levels of geometric idealization. Partial occlusion by an IVC filter and a thrombus is also considered. More than 99% of the infrarenal IVC volume is found to contain flow in the nonlinear region of the shear rate–viscosity curve for blood (less than 100 s−1) in the unoccluded IVCs. Newtonian simulations performed using the asymptotic viscosity for blood over-predict the non-Newtonian Reynolds numbers by more than a factor of two and under-predict the mean wall shear stress (WSS) by 28–54%. Agreement with the non-Newtonian simulations is better using a characteristic viscosity, but local WSS errors are still large (up to 50%) in the partially occluded cases. Secondary flow patterns in the IVC also depend on the viscosity model and IVC morphological complexity. Non-Newtonian simulations required only a marginal increase in computational expense compared with the Newtonian simulations. We recommend that future studies of IVC hemodynamics consider the effects of hemorheology and IVC morphology when accurate predictions of WSS and secondary flow features are desired.

30 citations

Journal ArticleDOI
TL;DR: In this article, an approach for producing optically transparent anatomical models that are suitable for particle image velocimetry (PIV) using a common 3D inkjet printing process (PolyJet) and stock resin (VeroClear) is presented.
Abstract: For decades, the study of biomedical fluid dynamics using optical flow visualization and measurement techniques has been limited by the inability to fabricate transparent physical models that realistically replicate the complex morphology of biological lumens. In this study, we present an approach for producing optically transparent anatomical models that are suitable for particle image velocimetry (PIV) using a common 3D inkjet printing process (PolyJet) and stock resin (VeroClear). By matching the index of refraction of the VeroClear material using a room-temperature mixture of water, sodium iodide, and glycerol, and by printing the part in an orientation such that the flat, optical surfaces are at an approximately 45 $$^{\circ }$$ angle to the build plane, we overcome the challenges associated with using this 3D printing technique for PIV. Here, we summarize our methodology and demonstrate the process and the resultant PIV measurements of flow in an optically transparent anatomical model of the human inferior vena cava.

26 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: This article reviews immersed methods for both elastic structures and structures with prescribed kinematics using integral operators to connect the Eulerian and Lagrangian frames and methods that directly apply jump conditions along fluid-structure interfaces.
Abstract: Fluid-structure interaction is ubiquitous in nature and occurs at all biological scales. Immersed methods provide mathematical and computational frameworks for modeling fluid-structure systems. These methods, which typically use an Eulerian description of the fluid and a Lagrangian description of the structure, can treat thin immersed boundaries and volumetric bodies, and they can model structures that are flexible or rigid or that move with prescribed deformational kinematics. Immersed formulations do not require body-fitted discretizations and thereby avoid the frequent grid regeneration that can otherwise be required for models involving large deformations and displacements. This article reviews immersed methods for both elastic structures and structures with prescribed kinematics. It considers formulations using integral operators to connect the Eulerian and Lagrangian frames and methods that directly apply jump conditions along fluid-structure interfaces. Benchmark problems demonstrate the effectiveness of these methods, and selected applications at Reynolds numbers up to approximately 20,000 highlight their impact in biological and biomedical modeling and simulation.

149 citations

Journal ArticleDOI
TL;DR: Reference values for the viscosity of blood, plasma, and serum that may assist in evaluating hemorheological profiles are provided and men had significantly higher blood viscosities values than women at each shear rate.

109 citations

Journal ArticleDOI
TL;DR: The role of computational modeling for medical devices is introduced, OSEL's ongoing research is described, and how evidence from computational modeling has been used in regulatory submissions by industry to CDRH in recent years is overviewed.
Abstract: Protecting and promoting public health is the mission of the U.S. Food and Drug Administration (FDA). FDA's Center for Devices and Radiological Health (CDRH), which regulates medical devices marketed in the U.S., envisions itself as the world's leader in medical device innovation and regulatory science-the development of new methods, standards, and approaches to assess the safety, efficacy, quality, and performance of medical devices. Traditionally, bench testing, animal studies, and clinical trials have been the main sources of evidence for getting medical devices on the market in the U.S. In recent years, however, computational modeling has become an increasingly powerful tool for evaluating medical devices, complementing bench, animal and clinical methods. Moreover, computational modeling methods are increasingly being used within software platforms, serving as clinical decision support tools, and are being embedded in medical devices. Because of its reach and huge potential, computational modeling has been identified as a priority by CDRH, and indeed by FDA's leadership. Therefore, the Office of Science and Engineering Laboratories (OSEL)-the research arm of CDRH-has committed significant resources to transforming computational modeling from a valuable scientific tool to a valuable regulatory tool, and developing mechanisms to rely more on digital evidence in place of other evidence. This article introduces the role of computational modeling for medical devices, describes OSEL's ongoing research, and overviews how evidence from computational modeling (i.e., digital evidence) has been used in regulatory submissions by industry to CDRH in recent years. It concludes by discussing the potential future role for computational modeling and digital evidence in medical devices.

90 citations

Journal ArticleDOI
TL;DR: Key components of patient-specific CFD are covered briefly which include image segmentation, geometry reconstruction, mesh generation, fluid-structure interaction, and solver techniques.
Abstract: The emergence of new cardiac diagnostics and therapeutics of the heart has given rise to the challenging field of virtual design and testing of technologies in a patient-specific environment. Given the recent advances in medical imaging, computational power and mathematical algorithms, patient-specific cardiac models can be produced from cardiac images faster, and more efficiently than ever before. The emergence of patient-specific computational fluid dynamics (CFD) has paved the way for the new field of computer-aided diagnostics. This article provides a review of CFD methods, challenges and opportunities in coronary and intra-cardiac flow simulations. It includes a review of market products and clinical trials. Key components of patient-specific CFD are covered briefly which include image segmentation, geometry reconstruction, mesh generation, fluid-structure interaction, and solver techniques.

66 citations