scispace - formally typeset
Search or ask a question
Author

Kenneth Mopper

Bio: Kenneth Mopper is an academic researcher from Old Dominion University. The author has contributed to research in topics: Dissolved organic carbon & Seawater. The author has an hindex of 59, co-authored 118 publications receiving 17860 citations. Previous affiliations of Kenneth Mopper include Washington State University & University of Delaware.


Papers
More filters
Journal ArticleDOI
TL;DR: Data indicate that SUVA, determined at 254 nm, is strongly correlated with percent aromaticity as determined by 13C NMR for 13 organic matter isolates obtained from a variety of aquatic environments and is shown to be a useful parameter for estimating the dissolved aromatic carbon content in aquatic systems.
Abstract: Specific UV absorbance (SUVA) is defined as the UV absorbance of a water sample at a given wavelength normalized for dissolved organic carbon (DOC) concentration. Our data indicate that SUVA, determined at 254 nm, is strongly correlated with percent aromaticity as determined by 13C NMR for 13 organic matter isolates obtained from a variety of aquatic environments. SUVA, therefore, is shown to be a useful parameter for estimating the dissolved aromatic carbon content in aquatic systems. Experiments involving the reactivity of DOC with chlorine and tetra- methylammonium hydroxide (TMAH), however, show a wide range of reactivity for samples with similar SUVA values. These results indicate that, while SUVA measurements are good predictors of general chemical characteristics of DOC, they do not provide information about reactivity of DOC derived from different types of source materials. Sample pH, nitrate, and iron were found to influence SUVA measurements.

3,618 citations

Journal ArticleDOI
TL;DR: In this article, a new approach for parameterizing dissolved organic matter (DOM) ultraviolet-visible absorption spectra is presented, where two distinct spectral slope regions (275-295 nm and 350-400 nm) within log-transformed absorption spectras were used to compare DOM from contrasting water types, ranging from wetlands (Great Dismal Swamp and Suwannee River) to photobleached oceanic water (Atlantic Ocean).
Abstract: A new approach for parameterizing dissolved organic matter (DOM) ultraviolet-visible absorption spectra is presented. Two distinct spectral slope regions (275–295 nm and 350–400 nm) within log-transformed absorption spectra were used to compare DOM from contrasting water types, ranging from wetlands (Great Dismal Swamp and Suwannee River) to photobleached oceanic water (Atlantic Ocean). On the basis of DOM size-fractionation studies (ultrafiltration and gel filtration chromatography), the slope of the 275–295-nm region and the ratio of these slopes (SR; 275–295-nm slope : 350–400-nm slope) were related to DOM molecular weight (MW) and to photochemically induced shifts in MW. Dark aerobic microbial alteration of chromophoric DOM (CDOM) resulted in spectral slope changes opposite of those caused by photochemistry. Along an axial transect in the Delaware Estuary, large variations in SR were measured, probably due to mixing, photodegradation, and microbial alteration of CDOM as terrestrially derived DOM transited through the estuary. Further, SR varied by over a factor of 13 between DOM-rich wetland waters and Sargasso Sea surface waters. Currently, there is no consensus on a wavelength range for log-transformed absorption spectra. We propose that the 275–295-nm slope be routinely reported in future DOM studies, as it can be measured with high precision, it facilitates comparison among dissimilar water types including CDOM-rich wetland and CDOM-poor marine waters, and it appears to be a good proxy for DOM MW.

2,002 citations

Journal ArticleDOI
01 Sep 1991-Nature
TL;DR: In this article, the photochemical degradation pathway is shown to be the rate-limiting step for the removal of a large fraction of oceanic dissolved organic carbon (DOC), which will increase with increasing flux of solar ultraviolet-B radiation.
Abstract: THE processes that regulate the cycling of oceanic dissolved organic carbon (DOC), one of the largest carbon reservoirs on the Earth's surface1, are largely unknown. DOC residues in the deep sea, below 500 m, seem to be composed mainly of biologically refractory compounds2–10 such as humic substances11. The average apparent 14C age of this refractory DOC is >6,000 yr in the deep Pacific2, suggesting that its rate of turnover is slow, but the pathways and rates responsible for this apparent slow turnover are unknown. Several studies have shown that aquatic humic substances are photochemically degraded by sunlight into biologically labile and/or volatile organic compounds12–14 and carbon monoxide15,16. Here we present new data which suggest that this photochemical degradation pathway is the rate-limiting step for the removal of a large fraction of oceanic DOC. This rate will increase with increasing flux of solar ultraviolet-B radiation. We estimate the oceanic residence time of biologically refractory, photochemically reactive DOC to be 500–2,100 yr, which is less than its average apparent 14C age. The injection of 'old carbon' from sediments into the deep sea may explain this discrepancy.

632 citations

Journal ArticleDOI
TL;DR: Benner et al. as mentioned in this paper used Fourier transform ion cyclotron mass spectrometry (FT-ICR MS) to identify photo-resistant, photo-labile, and photo-produced dissolved organic matter (DOM) from the Congo River.
Abstract: Congo River water was filtered and then irradiated for 57 d in a solar simulator, resulting in extensive photodegradation of dissolved organic matter (DOM). Whole-water (i.e., unfractionated) DOM was analyzed pre- and post-irradiation using ultrahigh resolution Fourier transform ion cyclotron mass spectrometry (FT-ICR MS), revealing the following three pools of DOM classified based upon their photoreactivity: (1) photo-resistant, (2) photo-labile, and (3) photo-produced. Photo-resistant DOM was heterogeneous, with most molecular classes represented, although only a small number of aromatics and no condensed aromatics were identified. The photoproduced pool was dominated by aliphatic compounds, although it included a small number of aromatics, including condensed aromatics. Aromatic compounds were the most photoreactive, with . 90% being lost upon irradiation. Photochemistry also resulted in a significant drop in the number of molecules identified and a decrease in their structural diversity. The FT-ICR MS signatures of two classes of refractory organic matter, black carbon and carboxylic-rich alicyclic molecules (CRAM), were present in the sample prior to irradiation, indicating that the Congo River could be a significant exporter of recalcitrant DOM to the ocean. All black carbon–like molecules identified in the initial sample were lost during irradiation. Molecular signatures consistent with CRAM were also highly photo-labile, demonstrating that environmental solar irradiation levels are capable of removing these refractory compounds from aquatic systems. Irradiation also shifted the molecular signature of terrestrial DOM toward that of marine DOM, thereby complicating the task of tracking terrestrial DOM in the ocean. The transfer of terrestrial dissolved organic matter (TDOM) via rivers to the oceans is a significant component in the global and oceanic carbon budgets (Schlesinger and Melack 1981; Hedges 1992). The , 0.25 Pg of dissolved organic carbon (DOC) discharged from rivers annually can account for the mean radiocarbon-based turnover times of oceanic DOC (, 4000–6000 yr; Williams and Gordon 1970). However, only very small amounts of TDOM have been identified in seawater using both organic biomarker and stable carbon isotopic approaches (Meyers-Schulte and Hedges 1986; Moran et al. 1991; Opsahl and Benner 1997). Estimates of TDOM contributions to the oceans have been based on comparisons of the biochemical and isotopic compositions of open-ocean dissolved organic matter (DOM) to freshwater riverine end-member counterparts (Meyers-Schulte and Hedges 1986; Hernes and Benner 2006) and have not typically accounted for changes during transit within rivers, estuaries, or the ocean (Cole and Caraco 2001; Raymond and Bauer 2001; Benner 2002). Without a better understanding of the types and magnitudes of modifications that components of TDOM undergo in lower rivers, estuaries, and the ocean, we may be misinterpreting the effective molecular signatures of TDOM in the ocean. Three massive tropical rivers, the Congo, Amazon, and Orinoco, are responsible for over a quarter of global DOC input to the oceans (Coynel et al. 2005). The Congo is second only to the Amazon as a DOC conduit between the terrestrial and marine biogeochemical cycles, exporting , 12.4 Tg DOC yr21, equivalent to , 5% of the global

538 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Aromatic carbon and the presence of specific aromatic compounds resulted in EEMs that aided in differentiating wastewater effluent DOM from drinking water DOM, and the highest cumulative EEM volume was observed for hydrophobic neutral DOM fractions.
Abstract: Excitation−emission matrix (EEM) fluorescence spectroscopy has been widely used to characterize dissolved organic matter (DOM) in water and soil. However, interpreting the >10,000 wavelength-dependent fluorescence intensity data points represented in EEMs has posed a significant challenge. Fluorescence regional integration, a quantitative technique that integrates the volume beneath an EEM, was developed to analyze EEMs. EEMs were delineated into five excitation−emission regions based on fluorescence of model compounds, DOM fractions, and marine waters or freshwaters. Volumetric integration under the EEM within each region, normalized to the projected excitation−emission area within that region and dissolved organic carbon concentration, resulted in a normalized region-specific EEM volume (Φi,n). Solid-state carbon nuclear magnetic resonance (13C NMR), Fourier transform infrared (FTIR) analysis, ultraviolet−visible absorption spectra, and EEMs were obtained for standard Suwannee River fulvic acid and 15 h...

4,407 citations

Journal ArticleDOI
TL;DR: In this paper, high-resolution fluorescence spectroscopy was used to characterize dissolved organic matter (DOM) in concentrated and unconcentrated water samples from a wide variety of freshwater, coastal and marine environments.

3,004 citations

Journal ArticleDOI
TL;DR: It is suggested that the large increase in the content of extracellular glutamate and aspartate in the hippocampus induced by the ischemic period may be one of the causal factors in the damage to certain neurons observed after ischemia.
Abstract: Rats were implanted with 0.3-mm-diameter dialysis tubing through the hippocampus and subsequently perfused with Ringer's solution at a flow rate of 2 microliter/min. Samples of the perfusate representing the extracellular fluid were collected over 5-min periods and subsequently analyzed for contents of the amino acids glutamate, aspartate, glutamine, taurine, alanine, and serine. Samples were collected before, during, and after a 10-min period of transient complete cerebral ischemia. The extracellular contents of glutamate and aspartate were increased, respectively, eight- and threefold during the ischemic period; the taurine concentration also was increased 2.6-fold. During the same period the extracellular content of glutamine was significantly decreased (to 68% of the control value), whereas the concentrations of alanine and serine did not change significantly during the ischemic period. The concentrations of gamma-aminobutyric acid (GABA) were too low to be measured reliably. It is suggested that the large increase in the content of extracellular glutamate and aspartate in the hippocampus induced by the ischemia may be one of the causal factors in the damage to certain neurons observed after ischemia.

2,885 citations

Book
01 Jan 1985
TL;DR: The first part of the book as mentioned in this paper is a general overview of the amount and general nature of dissolved organic carbon in natural waters, and the second part is a summary of the data that has accumulated from many disciplines over the last decade.
Abstract: This book is written as a reference on organic substances in natural waters and as a supplementary text for graduate students in water chemistry. The chapters address five topics: amount, origin, nature, geochemistry, and characterization of organic carbon. Of these topics, the main themes are the amount and nature of dissolved organic carbon in natural waters (mainly fresh water, although seawater is briefly discussed). It is hoped that the reader is familiar with organic chemistry, but it is not necessary. The first part of the book is a general overview of the amount and general nature of dissolved organic carbon. Over the past 10 years there has been an exponential increase in knowledge on organic substances in water, which is the result of money directed toward the research of organic compounds, of new methods of analysis (such as gas chromatography and mass spectrometry), and most importantly, the result of more people working in this field. Because of this exponential increase in knowledge, there is a need to pull together and summarize the data that has accumulated from many disciplines over the last decade.

2,803 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the fluorescence properties of fulvic acids isolated from streams and rivers receiving predominantly terrestrial sources of organic material and from lakes with microbial sources, and showed that the ratio of the emission intensity at a wavelength of 450 nm to that at 500 nm, obtained with an excitation of 370 nm, can serve as a simple index to distinguish sources of isolated aquatic fulvic acid.
Abstract: We studied the fluorescence properties of fulvic acids isolated from streams and rivers receiving predominantly terrestrial sources of organic material and from lakes with microbial sources of organic material. Microbially derived fulvic acids have fluorophores with a more sharply defined emission peak occurring at lower wavelengths than fluorophores in terrestrially derived fulvic acids. We show that the ratio of the emission intensity at a wavelength of 450 nm to that at 500 nm, obtained with an excitation of 370 nm, can serve as a simple index to distinguish sources of isolated aquatic fulvic acids. In our study, this index has a value of ;1.9 for microbially derived fulvic acids and a value of ;1.4 for terrestrially derived fulvic acids. Fulvic acids isolated from four large rivers in the United States have fluorescence index values of 1.4‐1.5, consistent with predominantly terrestrial sources. For fulvic acid samples isolated from a river, lakes, and groundwaters in a forested watershed, the fluorescence index varied in a manner suggesting different sources for the seepage and streamfed lakes. Furthermore, we identified these distinctive fluorophores in filtered whole water samples from lakes in a desert oasis in Antarctica and in filtered whole water samples collected during snowmelt from a Rocky Mountain stream. The fluorescence index measurement in filtered whole water samples in field studies may augment the interpretation of dissolved organic carbon sources for understanding carbon cycling in aquatic ecosystems.

2,428 citations