scispace - formally typeset
Search or ask a question
Author

Kenneth R. Sloan

Bio: Kenneth R. Sloan is an academic researcher from University of Alabama at Birmingham. The author has contributed to research in topics: Macular degeneration & Retinal pigment epithelium. The author has an hindex of 26, co-authored 76 publications receiving 5745 citations. Previous affiliations of Kenneth R. Sloan include University of Rochester & University of Birmingham.


Papers
More filters
Journal ArticleDOI
TL;DR: The total number of foveal cones is similar for eyes with widely varying peak cone density, consistent with the idea that the variability reflects differences in the lateral migration of photoreceptors during development.
Abstract: We have measured the spatial density of cones and rods in eight whole-mounted human retinas, obtained from seven individuals between 27 and 44 years of age, and constructed maps of photoreceptor density and between-individual variability. The average human retina contains 4.6 million cones (4.08-5.29 million). Peak foveal cone density averages 199,000 cones/mm2 and is highly variable between individuals (100,000-324,000 cones/mm2). The point of highest density may be found in an area as large as 0.032 deg2. Cone density falls steeply with increasing eccentricity and is an order of magnitude lower 1 mm away from the foveal center. Superimposed on this gradient is a streak of high cone density along the horizontal meridian. At equivalent eccentricities, cone density is 40-45% higher in nasal compared to temporal retina and slightly higher in midperipheral inferior compared to superior retina. Cone density also increases slightly in far nasal retina. The average human retina contains 92 million rods (77.9-107.3 million). In the fovea, the average horizontal diameter of the rod-free zone is 0.350 mm (1.25 degrees). Foveal rod density increases most rapidly superiorly and least rapidly nasally. The highest rod densities are located along an elliptical ring at the eccentricity of the optic disk and extending into nasal retina with the point of highest density typically in superior retina (5/6 eyes). Rod densities decrease by 15-25% where the ring crosses the horizontal meridian. Rod density declines slowly from the rod ring to the far periphery and is highest in nasal and superior retina. Individual variability in photoreceptor density differs with retinal region and is similar for both cones and rods. Variability is highest near the fovea, reaches a minimum in the midperiphery, and then increases with eccentricity to the ora serrata. The total number of foveal cones is similar for eyes with widely varying peak cone density, consistent with the idea that the variability reflects differences in the lateral migration of photoreceptors during development. Two fellow eyes had cone and rod numbers within 8% and similar but not identical photoreceptor topography.

2,471 citations

Journal ArticleDOI
TL;DR: Primate cones maximally sensitive to short wavelength light (blue cones) have been previously identified by using indirect methods and stained wholemounted human retinas obtained from 6 female donors using an affinity purified antibody to a 19 amino acid peptide sequence at the N‐terminus of blue opsin.
Abstract: Primate cones maximally sensitive to short wavelength light (blue cones) have been previously identified by using indirect methods. We stained 7 wholemounted human retinas obtained from 6 female donors, using an affinity purified antibody to a 19 amino acid peptide sequence at the N-terminus of blue opsin (Lerea et al., '89: Neuron 3:367-376), standard PAP immunocytochemistry, and controls. Cones were counted where all outer segments could be traced to inner segments and were measured where cells were well aligned vertically. We find that: (1) 7% of cones within 4 mm of the foveal center are labeled by antiblue opsin; (2) compared to neighboring red/green cones, blue cone inner segments are 10% taller, have a larger cross-sectional diameter near the junction with the outer segment, and a smaller diameter near the external limiting membrane, resulting in a more cylindrical shape, (3) foveal blue cones are sparse, irregularly spaced, and missing in a zone about 100 microns (0.35 degrees) in diameter near the site of peak cone density, (4) the highest densities of blue cones (greater than 2,000 cells/mm2) are found in a ring at 0.1-0.3 mm eccentricity, and (5) the shortest distances between neighboring cones are between blue and red/green cones, and the blue and red/green mosaics are statistically independent. These findings are consistent with psychophysical reports of foveal tritanopia and maximum sensitivity to blue light at 1 degree eccentricity. Blue cone spacing may limit resolution of the blue channel out to 20-30 degrees eccentricity. The blue and red/green mosaics appear to be formed by separate processes.

612 citations

Journal ArticleDOI
01 May 1987-Science
TL;DR: Cone density was greater in the nasal than in the temporal peripheral retina, and this nasotemporal asymmetry was more pronounced in monkey than in human retina.
Abstract: The distribution of photoreceptors is known for only one complete human retina and for the cardinal meridians only in the macaque monkey retina. Cones can be mapped in computer-reconstructed whole mounts of human and monkey retina. A 2.9-fold range in maximum cone density in the foveas of young adult human eyes may contribute to individual differences in acuity. Cone distribution is radially asymmetrical about the fovea in both species, as previously described for the distribution of retinal ganglion cells and for lines of visual isosensitivity. Cone density was greater in the nasal than in the temporal peripheral retina, and this nasotemporal asymmetry was more pronounced in monkey than in human retina.

552 citations

Journal ArticleDOI
TL;DR: A method that can handle sets of contours in which adjacent contours share a very contorted boundary is presented, and a new approach to solving the correspondence problem using a Minimum Spanning Tree generated from the contours is described.
Abstract: This paper is concerned with the problem of reconstructing the surfaces of three-dimensional objects, given a collection of planar contours representing cross-sections through the objects. This problem has important aplications in biomedical research and instruction, solid modeling, and industrial inspection.The method we describe produces a triangulated mesh from the data points of the contours which is then used in conjunction with a piecewise parametric surface-fitting algorithm to produce a reconstructed surface.The problem can be broken into four subproblems: the correspondence problem (which contours should be connected by the surface?), the tiling problem (how should the contours be connected?), the branching problem (what do we do when there are branches in the surface?), and the surface-fitting problem (what is the precise geometry of the reconstructed surface?) We describe our system for surface reconstruction from sets of contours with respect to each of these subproblems. Special attention is given to the correspondence and branching problems. We present a method that can handle sets of contours in which adjacent contours share a very contorted boundary, and we describe a new approach to solving the correspondence problem using a Minimum Spanning Tree generated from the contours.

345 citations

Journal ArticleDOI
TL;DR: In this paper, the authors characterized the morphology, prevalence, and topography of subretinal drusenoid deposits (SDD), a candidate histological correlate of reticular pseudodrusen, with reference to basal linear deposit (BlinD), and proposed a biogenesis model for both lesions.
Abstract: Purpose To characterize the morphology, prevalence, and topography of subretinal drusenoid deposits (SDD), a candidate histological correlate of reticular pseudodrusen, with reference to basal linear deposit (BlinD), a specific lesion of age-related macular degeneration (AMD); to propose a biogenesis model for both lesions.

329 citations


Cited by
More filters
Proceedings ArticleDOI
01 Jul 1992
TL;DR: A general method for automatic reconstruction of accurate, concise, piecewise smooth surfaces from unorganized 3D points that is able to automatically infer the topological type of the surface, its geometry, and the presence and location of features such as boundaries, creases, and corners.
Abstract: This thesis describes a general method for automatic reconstruction of accurate, concise, piecewise smooth surfaces from unorganized 3D points. Instances of surface reconstruction arise in numerous scientific and engineering applications, including reverse-engineering--the automatic generation of CAD models from physical objects. Previous surface reconstruction methods have typically required additional knowledge, such as structure in the data, known surface genus, or orientation information. In contrast, the method outlined in this thesis requires only the 3D coordinates of the data points. From the data, the method is able to automatically infer the topological type of the surface, its geometry, and the presence and location of features such as boundaries, creases, and corners. The reconstruction method has three major phases: (1) initial surface estimation, (2) mesh optimization, and (3) piecewise smooth surface optimization. A key ingredient in phase 3, and another principal contribution of this thesis, is the introduction of a new class of piecewise smooth representations based on subdivision. The effectiveness of the three-phase reconstruction method is demonstrated on a number of examples using both simulated and real data. Phases 2 and 3 of the surface reconstruction method can also be used to approximate existing surface models. By casting surface approximation as a global optimization problem with an energy function that directly measures deviation of the approximation from the original surface, models are obtained that exhibit excellent accuracy to conciseness trade-offs. Examples of piecewise linear and piecewise smooth approximations are generated for various surfaces, including meshes, NURBS surfaces, CSG models, and implicit surfaces.

3,119 citations

Journal ArticleDOI
TL;DR: The total number of foveal cones is similar for eyes with widely varying peak cone density, consistent with the idea that the variability reflects differences in the lateral migration of photoreceptors during development.
Abstract: We have measured the spatial density of cones and rods in eight whole-mounted human retinas, obtained from seven individuals between 27 and 44 years of age, and constructed maps of photoreceptor density and between-individual variability. The average human retina contains 4.6 million cones (4.08-5.29 million). Peak foveal cone density averages 199,000 cones/mm2 and is highly variable between individuals (100,000-324,000 cones/mm2). The point of highest density may be found in an area as large as 0.032 deg2. Cone density falls steeply with increasing eccentricity and is an order of magnitude lower 1 mm away from the foveal center. Superimposed on this gradient is a streak of high cone density along the horizontal meridian. At equivalent eccentricities, cone density is 40-45% higher in nasal compared to temporal retina and slightly higher in midperipheral inferior compared to superior retina. Cone density also increases slightly in far nasal retina. The average human retina contains 92 million rods (77.9-107.3 million). In the fovea, the average horizontal diameter of the rod-free zone is 0.350 mm (1.25 degrees). Foveal rod density increases most rapidly superiorly and least rapidly nasally. The highest rod densities are located along an elliptical ring at the eccentricity of the optic disk and extending into nasal retina with the point of highest density typically in superior retina (5/6 eyes). Rod densities decrease by 15-25% where the ring crosses the horizontal meridian. Rod density declines slowly from the rod ring to the far periphery and is highest in nasal and superior retina. Individual variability in photoreceptor density differs with retinal region and is similar for both cones and rods. Variability is highest near the fovea, reaches a minimum in the midperiphery, and then increases with eccentricity to the ora serrata. The total number of foveal cones is similar for eyes with widely varying peak cone density, consistent with the idea that the variability reflects differences in the lateral migration of photoreceptors during development. Two fellow eyes had cone and rod numbers within 8% and similar but not identical photoreceptor topography.

2,471 citations

Journal ArticleDOI
TL;DR: L'accentuation est mise sur la representation de donnees dans les applications de traitement d'images, d'infographie, les systemes d'informations geographiques and the robotique.
Abstract: Apercu sur les quadarbres et les structures de donnees hierarchiques. Elles sont basees sur le principe de decomposition recursive. L'accentuation est mise sur la representation de donnees dans les applications de traitement d'images, d'infographie, les systemes d'informations geographiques et la robotique. On examine en detail un certain nombre d'operations dans lesquelles de telles structures de donnees trouvent leur utilisation

2,273 citations

Journal ArticleDOI
TL;DR: This survey will provide a useful guide to quickly acquaint researchers with the main literature in this research area and it seems likely that the Hough transform will be an increasingly used technique.
Abstract: We present a comprehensive review of the Hough transform, HT, in image processing and computer vision. It has long been recognized as a technique of almost unique promise for shape and motion analysis in images containing noisy, missing, and extraneous data but its adoption has been slow due to its computational and storage complexity and the lack of a detailed understanding of its properties. However, in recent years much progress has been made in these areas. In this review we discuss ideas for the efficient implementation of the HT and present results on the analytic and empirical performance of various methods. We also report the relationship of Hough methods and other transforms and consider applications in which the HT has been used. It seems likely that the HT will be an increasingly used technique and we hope that this survey will provide a useful guide to quickly acquaint researchers with the main literature in this research area.

2,099 citations

01 Mar 2001
TL;DR: Using singular value decomposition in transforming genome-wide expression data from genes x arrays space to reduced diagonalized "eigengenes" x "eigenarrays" space gives a global picture of the dynamics of gene expression, in which individual genes and arrays appear to be classified into groups of similar regulation and function, or similar cellular state and biological phenotype.
Abstract: ‡We describe the use of singular value decomposition in transforming genome-wide expression data from genes 3 arrays space to reduced diagonalized ‘‘eigengenes’’ 3 ‘‘eigenarrays’’ space, where the eigengenes (or eigenarrays) are unique orthonormal superpositions of the genes (or arrays). Normalizing the data by filtering out the eigengenes (and eigenarrays) that are inferred to represent noise or experimental artifacts enables meaningful comparison of the expression of different genes across different arrays in different experiments. Sorting the data according to the eigengenes and eigenarrays gives a global picture of the dynamics of gene expression, in which individual genes and arrays appear to be classified into groups of similar regulation and function, or similar cellular state and biological phenotype, respectively. After normalization and sorting, the significant eigengenes and eigenarrays can be associated with observed genome-wide effects of regulators, or with measured samples, in which these regulators are overactive or underactive, respectively.

1,815 citations