scispace - formally typeset
Search or ask a question
Author

Kenneth Steiglitz

Bio: Kenneth Steiglitz is an academic researcher from Princeton University. The author has contributed to research in topics: Signal processing & Very-large-scale integration. The author has an hindex of 46, co-authored 202 publications receiving 14495 citations. Previous affiliations of Kenneth Steiglitz include Telcordia Technologies & Northwestern University.


Papers
More filters
Journal ArticleDOI
TL;DR: A transmitter/receiver pair is proposed that compensates for crosstalk by treating an entire bundle of twisted pairs as a single multi-input/multi-output channel with a (slowly varying) matrix transfer function.
Abstract: Transceiver designs for multiple coupled channels typically treat the crosstalk between adjacent twisted pairs as random noise uncorrelated with the transmitted signal. The authors propose a transmitter/receiver pair that compensates for crosstalk by treating an entire bundle of twisted pairs as a single multi-input/multi-output channel with a (slowly varying) matrix transfer function. The proposed transceiver uses multichannel adaptive FIR filters to cancel near- and far-end crosstalk, and to pre- and postprocess the input/output of the channel. Linear pre- and postprocessors that minimize mean squared error between the received and transmitted signal in the presence of both near- and far-end crosstalk are derived. The performance of an adaptive near-end crosstalk canceller using the stochastic gradient (least-mean-square) transversal algorithm is illustrated by numerical simulation. Plots of mean squared error versus time and eye diagrams are presented, assuming a standard transmission line model for the channel. A signal design algorithm that maps a vector input bit stream to a stream of channel symbol vectors is also presented and illustrated explicitly for s simple model of two coupled channels. >

73 citations

Journal ArticleDOI
TL;DR: It is shown that the class of linear time-invariant realizable filters is invariant under this isomorphism, thus demonstrating that the theories of processing signals with such filters are identical in the digital and analog cases.
Abstract: A specific isomorphism is constructed via the transform domains between the analog signal space L2 (−∞, ∞) and the digital signal space l2. It is then shown that the class of linear time-invariant realizable filters is invariant under this isomorphism, thus demonstrating that the theories of processing signals with such filters are identical in the digital and analog cases. This means that optimization problems involving linear time-invariant realizable filters and quadratic cost functions are equivalent in the discrete-time and the continuous-time cases, for both deterministic and random signals. Finally, applications to the approximation problem for digital filters are discussed.

70 citations

Journal ArticleDOI
TL;DR: It is shown that the evaluation of an $(n - 1)st-degree polynomial and all its derivatives at a single point requires at most $O(n\log n)$ steps.
Abstract: We investigate the evaluation of an $(n - 1)$st degree polynomial at a sequence of n points. It is shown that such an evaluation reduces directly to a simple convolution if and only if the sequence of points is of the form $b, ba,ba^2 , \cdots ,ba^{n - 1} $ for complex numbers a and b (the so-called “chirp transform”). By more complex reductions we develop an $O(n\log n)$ evaluation algorithm for sequences of points of the form \[ b + c + d,\quad ba^2 + ca + d,\quad ba^4 + ca^2 + d, \cdots \] for complex numbers a, b, c and d. Finally we show that the evaluation of an $(n - 1)$st-degree polynomial and all its derivatives at a single point requires at most $O(n\log n)$ steps.

68 citations

Journal ArticleDOI
TL;DR: It is shown that some kind of meaningful computation can be embedded in very simple, microscopically homogeneous, one-dimensional automata, and in particular filter automata with a parity next-state rule.
Abstract: It is shown that some kind of meaningful computation can be embedded in very simple, microscopically homogeneous, one-dimensional automata, and in particular filter automata with a parity next-state rule. A systematic procedure is given for generating moving, periodic structures (particles). These particles exhibit soliton-like properties; that is, they often pass through one another with phase shifts. Ways to encode information in the phase of these particles are discussed. The search for useful logical operations is reduced to a search for paths in certain graphs. As a demonstration of principle, the details of implementing a carry-ripple adder are given. >

68 citations


Cited by
More filters
Book
01 Nov 2008
TL;DR: Numerical Optimization presents a comprehensive and up-to-date description of the most effective methods in continuous optimization, responding to the growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems.
Abstract: Numerical Optimization presents a comprehensive and up-to-date description of the most effective methods in continuous optimization. It responds to the growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems. For this new edition the book has been thoroughly updated throughout. There are new chapters on nonlinear interior methods and derivative-free methods for optimization, both of which are used widely in practice and the focus of much current research. Because of the emphasis on practical methods, as well as the extensive illustrations and exercises, the book is accessible to a wide audience. It can be used as a graduate text in engineering, operations research, mathematics, computer science, and business. It also serves as a handbook for researchers and practitioners in the field. The authors have strived to produce a text that is pleasant to read, informative, and rigorous - one that reveals both the beautiful nature of the discipline and its practical side.

17,420 citations

Book
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

8,059 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered factoring integers and finding discrete logarithms on a quantum computer and gave an efficient randomized algorithm for these two problems, which takes a number of steps polynomial in the input size of the integer to be factored.
Abstract: A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.

7,427 citations

Journal ArticleDOI
TL;DR: This paper presents work on computing shape models that are computationally fast and invariant basic transformations like translation, scaling and rotation, and proposes shape detection using a feature called shape context, which is descriptive of the shape of the object.
Abstract: We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by: (1) solving for correspondences between points on the two shapes; (2) using the correspondences to estimate an aligning transform. In order to solve the correspondence problem, we attach a descriptor, the shape context, to each point. The shape context at a reference point captures the distribution of the remaining points relative to it, thus offering a globally discriminative characterization. Corresponding points on two similar shapes will have similar shape contexts, enabling us to solve for correspondences as an optimal assignment problem. Given the point correspondences, we estimate the transformation that best aligns the two shapes; regularized thin-plate splines provide a flexible class of transformation maps for this purpose. The dissimilarity between the two shapes is computed as a sum of matching errors between corresponding points, together with a term measuring the magnitude of the aligning transform. We treat recognition in a nearest-neighbor classification framework as the problem of finding the stored prototype shape that is maximally similar to that in the image. Results are presented for silhouettes, trademarks, handwritten digits, and the COIL data set.

6,693 citations

MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations